x-

> 7

-

NTIS HC AO5/MF AO1

NASA/NAG-1-667/R/3.0/NCSU.CSC.(DFM,KCT,MAV)/Oct-87 1
L) JIAEr T
¢ +3)
Semiannual Project Report Submitted to the .-~ id R

(S

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION),Q) 40
Langley Research Center, Hampton, Va.

for research entitled

EXPERIMENTS IN FAULT TOLERANT SOFTWARE
RELIABILITY

(NAG-1-667)

from

David F. McAllister, Co-Principal Investigator, Professor
K.C. Tai, Co-Principal Investigator, Professor
Miaden A. Vouk, Co-Principal Investigator, Assistant Professor

Department of Computer Science
North Carolina State University
Raleigh, N.C. 27695-8206
(919) 737-2858

Report Period
Beginning Date: April 1, 1987.
Ending Date: September 30, 1987.

(NASA-CR-181SSQ) EXPERIMENTS IN ?AULT , H?g;;3§f3
mOLERANT SOFTWARE RELIABILITY Semiannual et
Progress Report, 1 Apr. -~ 3¢ Sep., 1987 . ves 13
{North Carolina State Upniv.) 100 p Avaii:

CsSCL 09B G3/61 0111679

NASA/NAG-1-667/R/3.0/NCSU.CSC.(DFM,KCT,MAV)/Oct-87

. "

Table of Contents

Project Progress Summary
1. General Project Description

2. Results
2.1 Reliability of Voting in Fault-Tolerant Software
Systems
2.2 Effectiveness of Back-to-Back Testing
2.3 RSDIMU Recertification Testing
2.4 Other Work in Progress

Bibliography
Appendix | NCSU.CSC TR-87-16 (30 pages)
Appendix Il NCSU.CSC TR-87-08 (23 pages)

Appendix il RSDIMU_ATS 3.0 (34 pages)

(2B <) M=) B3 | ()]

\‘

NASA/NAG-1-667/R/3.0/NCSU.CSC.(DFM,KCT,MAV)/Oct-87 3

Project Progress Summary

In this project we proposed to investigate a number of experimental and
theoretical issues associated with the practical use of fault-tolerant
software (FTS). In the period reported here we have worked on the
following:

o

We evaluated the reliability of voting in fault-tolerant software
system for small output spaces,

We investigated effectiveness of back-to-back testing process.
Version 3.0 of RSDIMU-ATS, a semi-automatic test bed for
certification testing of RSDIMU software developed in a previous
experiment, was prepared and distributed for a multi-university
N-version programming certification effort. Certification of the
functionally equivalent components was completed during the summer
87.

We continued studying software reliability estimation methods based

on non-random sampling.

We continued investigating existing and worked on formulation of new
fault-tolerance models.

This report describes the results obtained in the period April 1, 1987 to
September 30, 1987.

NASA/NAG-1-667/R/3.0/NCSU.CSC.(DFM,KCT,MAV)/Oct-87 4

1. General Project Description

In the period 1985-87 NASA funded a multi-university experiment to
develop 20 functionaily equivalent software versions which are to be used
to determine the reliability gains of several common fault-tolerant
software systems. These include the two common methods of N-version
programming and recovery-block [Ran75, Avi84] and hybrid schemes such
as the consensus recovery block technique [Sco87]. Our main goal was to
investigate the reliability of N-version programming which requires the
comparison of outputs of several functionally equivalent software
components to determine correctness. An important related issue is how
to test these components for reliability and capitalize on the fact that
they are functionally equivalent.

Although experimenters have shown that existing fault-tolerant software
(FTS) techniques can achieve an improvement in reliability over
non-fault-tolerant software systems, it has also been shown that failure
dependence among FTS system components may not be negligible in the
context of current software development and testing techniques [Nag82,
Sco84, Nag84, Vou85, Knig86, Kel86]. Correlated coincidentai component
failures may be disastrous in current FTS approaches and can seriously
undermine any reliability gains offered by the fault-tolerance mechanisms
[e.g. Sco83a, Sco84, Avi84, Eck85, Vou86a). Hence it is important to detect
and eliminate them as early as possible in a FTS life-cycle.

This project is concerned with experimental and theoretical investigation
of FTS problems. A four university effort to build and verify 20
functionally equivalent software components implementing an abstraction
of a redundant strapped down inertial measurement unit (RSDIMU) was
completed this summer. Analysis of the resuits of the experiment is
underway. In connection with this effort it was necessary to research
software development and testing techniques, and FTS voting models in
order to identify characteristics that are relevant to development of
redundant software components intended for FTS. This report describes
the results obtained in the period April 1, 1987 to September 30, 1987.

In the period reported here we have worked on the following:

NASA/NAG-1-667/R/3.0/NCSU.CSC.(DFM,KCT,MAV)/Oct-87 5

° We evaluated the reliability of voting in fault-tolerant software
system for smalil output spaces.

° We investigated effectiveness of back-to-back testing process.

° Version 3.0 of RSDIMU-ATS, a semi-automatic test bed for
certification testing of RSDIMU software developed in a previous
experiment, was prepared and distributed for field testing in a
multi-university N-version programming effort. Recertification of the
functionally equivalent components was completed during the summer
87.

° We continued studying software reliability estimation methods based
on non-random sampling.

° We continued investigating existing and worked on formulation of new
fault-tolerance models.

2. Results

2.1Reliability of Voting in Fault-Tolerant Software
Systems for Small Output Spaces

Under a voting strategy in a fault-tolerant software system there is a
difference between correctness and agreement. An independent N-version
programming reliability model is proposed for treating small output
spaces which distinguishes between correctness and agreement. System
reliability is investigated using analytical reiationships and simulation. A
consensus majority voting strategy is proposed and its performance is
analyzed and compared with other voting strategies. Consensus majority
strategy automatically adapts the voting to different component
reliability and output space cardinality characteristics. It is shown that
absolute majority voting strategy provides a lower bound on the
reliability provided by the consensus majority, and 2-of-n voting strategy
an upper bound. If r is the cardinality of the output space it is proved that
1/r is a lower bound on the average reliability of fault-tolerant system
components below which the system reliability begins to deteriorate as
more versions are added.

Report on the execution time distributions is in Appendix | of this report.

NASA/NAG-1-667/R/3.0/NCSU.CSC.(DFM,KCT,MAV)/Oct-87 6

2.2 Effectiveness of Back-to-Back Testing

Results are presented of an experiment in back-to-back testing using the
functionally equivalent software versions mentioned earlier in this
report. These versions were used to evaluate use of back-to-back testing
in initial stages of the software testing process where a difference
among outputs signals a potential system fault. It is shown that a
significant increase in the probability of detecting failures can be
achieved using back-to-back testing provided failure correlation between
versions is sufficiently small. It was found that in some cases
back-to-back testing may provide a failure detection gain even with
relatively high correlation. Three models of back-to-back testing process
of multiple functionally equivalent software versions are described and
compared. Two models treat the case where version failures are
independent while the third model describes the more realistic case
where there is correlation among the failures. The cost of the approach
over single version development is discussed briefly.

Report on back-to-back testing is in Appendix |l of this report.

2.3 RSDIMU Certification Testing

RSDIMU Acceptance Testing System (RSDIMU-ATS) version 3.0 was
released to help test and analyze multiversion RSDIMU procedures during
the certification phase of the experiment in the summer 1987. This
system was released for restricted use by sites involved in the
NASA-LaRC fault-tolerant software experiment. RSDIMU-ATS is intended
for use in a UNIX environment and may need to be modified if UNIX-like, or
non-VAX systems are used. Detailed release notes for version 3.0 are
given in Appendix Il

Recertification of of the programs assigned to NCSU was complieted during
the summer 1987.

2.4 Other Work in Progress

Investigations in progress are continued study of the effectiveness of
back-to-back testing, and a performance study of muitistage

NASA/NAG-1-667/R/3.0/NCSU.CSC.(DFM,KCT,MAV)/Oct-87 7

fault-tolerant software systems. Reports on both activities are expected
in the next report period.

[Avig4]
[Brig86]
[Dur84]
[Eck85]

{Ehr85]
[HowS87]
[KelB6]

[Kni86]

[McA87]

[Nag82]
[Nag84]

[Ran75]
[Sag86]
[Sco83a]
[Sco83b]

[Sco84]
[Sco87]
[Vou85]
[Vou86a]

Bibliography

Avizienis and J.P. Kelly, "Fault-Tolerance by Design Diversity: Concepts and
Experiments", Computer, Vol. 17, pp. 67-80, 1984 .
S. Brilliant and J.C. Knight, "Testing Software Using Multiple Versions", University
of Virginia, Department of Computer Science, Report No. RM-86-07, 1986.
J.W. Duran and S.C. Ntafos, "An evaluation of random testing", IEEE Trans. Soft.
Eng., Vol. SE-10, 438-444, 1984

D.E. Eckhardt, Jr. and L.D. Lee, "A Theoretical Basis for the Analysis of
Multiversion Software Subject to Coincident Errors”, IEEE Trans. Soft. Eng., Vol.
SE-11(12), 1511-1517, 1985.
W. Ehrenberger, "Statistical Testing of Real Time Software", in "Verification and
Validation of Real Time Software”, ed. W.J. Quirk, Springer-Verlag, 147-178, 1985.
W.E. Howden, "Functional Program Testing and Analysis", McGraw-Hill Book Co.,
1987.
J. Kelly, D. Eckhardt, A. Caglayan, J. Knight, D. McAllister, M. Vouk, "Early
Results from the Second Generation Multi-Version Software Experiment", submitted
for publication, 1986.
J.C. Knight and N.G. Leveson, "An Experimental Evaluation of the assumption of
Independence in Multiversion Programming"”, IEEE Trans. Soft. Eng., Vol. SE-12(1),
96-109, 1986.
D.F. McAllister, C.E. Sun, and M.A. Vouk, "Reliability of Voting in Fault-Tolerant
Software Systems for Small Output Spaces"”, North Carolina State University,
Department of Computer Science, Technical Report, TR-87-16, submitted for
publication, 1987.
P.M. Nagel and J.A. Skrivan, "Software Reliability: Repetitive Run Experimentation
and Modeling", BSC-40366, Boeing, Seattle, Wa., 1982
P.M. Nagel, F.W. Scholz and J.A. Skrivan, "Software Reliability: Additional
Investigation into Modeling with Replicated Experiments”, NASA CR172378, Boeing,
Seattle, Wa., 1984
B. Randell, "System structure for software fault-tolerance", IEEE Trans. Soft. Eng.,
Vol. SE-1, 220-232, 1975.
F. Saglietti and W. Ehrenberger, "Software Diversity -- Some Considerations about
Benefits and its Limitations", Proc. IFAC SAFECOMP '86, 27-34, 1986.
R.K. Scott, "Data Domain Modeling of Fault Tolerant Software Reliability", Ph.D.
Dissertation, North Carolina State University, Raleigh, North Carolina, 1983
R.K. Scott, J.W. Gault, D.F. McAllister and J. Wiggs, "Experimental Validation of
Six Fault-Tolerant Software Reliability Models", Proc. IEEE 14th Fault-Tolerant
Computing Symposium, pp. 102-107, 1983
R.K. Scott, JJW. Gault, D.F. McAllister and J. Wiggs, "Investigating Version
Dependence in Fault-Tolerant Software”, AGARD 361, pp. 21.1-21.10, 1984
R.K. Scott, J.W. Gault and D.F. McAllister, "Fault-Tolerant Software Reliability
Modeling", IEEE Trans. Software Eng., Vol SE-13, 582-592, 1987.
M.A. Vouk, D.F. McAllister, K.C. Tai, "Identification of correlated failures of
fault-tolerant software systems", in Proc. COMPSAC 85, 437-444, 1985.
M.A. Vouk, D.F. McAllister, K.C. Tai, "An Experimental Evaluation of the
Effectiveness of Random Testing of Fault-tolerant Software"”, Proc. Workshop on

NASA/NAG-1-667/R/3.0/NCSU.CSC.(DFM,KCT,MAV)/Oct-87 8

[Vou86b]

[Vou86c]

[Vou87]

Software Testing, Banff, Canada, IEEE CS Press, 74-81, July 1986.

M.A. Vouk, M.L. Helsabeck, K.C. Tai, and D.F. McAllister, "On Testing of
Functionally Equivalent Components of Fault-Tolerant Software", Proc. COMPSAC
86, 414-419, 1986.

M.A. Vouk, and D.F. McAllister, "A Proposed Methodology for The Development of
Fault-Tolerant Software", North Carolina State University, Department of Computer
Science, Technical Report TR-86-11, 1986.

M.A. Vouk, D.F. McAllister, D.E. Eckhardt, A. Caglayan, and J.P.J. Kelly,
"Effectiveness of Back-to-Back Testing", North Carolina State University, Department
of Computer Science, Technical Report TR-86-08, 1987, submitted for publication.

NASA/NAG-1-667/R/3.0/NCSU.CSC.(DFM,KCT,MAV)/Oct-87 9

Appendix | N88413864

'\

COMPUTER STUDIES

TECHNICAL REPORT

Reliability of Voting in Fault-Tolerant
Software Systems for Small
Output Spaces

McAllister, David F.
Sun, Chien-En
Vouk, Mladen A.

TR-87-16

North Carolina State University

Raleigh, N. C. 27650

Reliability of Voting in Fault-Tolerant Software Systems
for Small Output Spaces

David F. McAllister
Chien-En Sun
Mladen A. Vouk

Department of Computer Science
North Carolina State University

Abstract

Under a voting strategy
correctness and agreement. An

Raleigh, NC 27695-8206

in a fault-tolerant software system there is a difference between
independent N-version programming reliability model is proposed

for treating small output spaces which distinguishes between correctness and agreement. System
reliability s investigated using analytical relationships and simulation. A consensus majority voting
strategy is proposed and its performance is analysed and compared with other voting strategies.
Consensus majority strategy automatically adapts the voting to different component reliability and
output space cardinality characteristics. It is shown that absolute majority voting strategy provides a

lower bound on the reliability]
upper bound. If r is the cardinal

provided by the consensus majority, and 2-of-n voting strategy an
lity of the output space it is proved that 1/r is a lower bound on the

average reliability of fault-tolerant system components below which the system reliability begins to

deteriorate as more versions are

*Research supported in part by

added.

NASA Grant No. NAG-1-667

L. Introduction

Recent experiments with multiversion software have demonstrated the fact that identical and
incorrect answers can occur with perhaps higher frequency than is expected [Sco84, Kni86,
Vou85,86] particularly when small output spaces are involved. For example, if the output space is
binary, {0,1}, then all incorrect responses must agree. Such phenomena make the fault-tolerant
techniques of N-version programming [Avi77, Avi84] and Consensus Recovery Block
[Sco83a,b,84,87] more likely to fail during the voting process since the voter may not be able to
distinguish between correct and incorrect responses. In the past models of fault-tolerant reliability
have equated output agreement with correctess (e.g. [Sco83a,b, Sco87]) which is inadequate for
complete modeling of such an environment. In this paper we distinguish between agreement and
correctness and develop a reliability model of a voting environment which can be used to determine
the number of versions required as a function of the cardinality of the output space.

II. Voting Strategies in N-Version Programming

In an m-of-n fault-tolerant software (FTS) system the number of functionally equivalent
independently developed versions is n, and m is the agreement number or the number of
matching outputs which the voting or adjudication algorithm requires for system success. In the
past, because of cost restrictions, n was rarely larger than 3 and m was traditionally chosen as
Ceiling[(n+1)/2] which we will call absolute majority voting. In [Sco87] Scott, Gault and
McAllister show that if the output space is large and with true statistical independence of FTS
versions, there is no need to choose m > 2 regardless of the size of n although considerable
reliability gains occur with larger n. We will use the term 2-of-n voting for this case.

With small output spaces we suggest that a third voting technique be considered, which we will call
consensus majority voting . To motivate this technique consider the following scenario.
Suppose we have n = 11 versions and output space cardinality of 3. Let a vector (i,j,k) represent
the frequencies of the three possible output states (i + j + k = n) and let the first component, i,
represent the frequency of the correct output. In this case, absolute majority is 6, but vectors
(5,3,3), (5,4,2), or (5,2,4) may represent likely events which will be declared a system failure
under absolute majority voting. Furthermore, the vectors (4,4,3) and (4,3,4) are the only cases in
which a correct answer occurs when exactly four versions agree. But if three is chosen as the
agreement number, there always exists another output on which more than three versions agree. In
such cases an obvious strategy is to choose the output with the largest frequency, if such exists.

When there is more than one choice, as in this example when the output state frequency vector is
(5,5,1) or (5,1,5), and if choosing a wrong answer or having no answer has the same impact on
the system, then choosing one result with five identical outputs at random is a better strategy (on
the average) than declaring system failure. In this example then there is a 50 percent chance that the
correct output will be selected when this formal strategy is used.

In consensus majority voting the voter uses the following algorithm to select the "correct” answer:

- If there is an absolute majority agreement (2 Ceiling{(n+1)/2]) then this answer is chosen as the "
correct” answer.

- If there is a unique maximum agreement, but this number of agreeing versions is less than
Ceiling[(n+1)/2], then this answer is chosen as the "correct” one.

- If there is a tie in the maximum agreement number then one set is chosen at random and the
answer associated with this set is chosen as the "correct” one.

We discuss this strategy further in the following sections and compare it with 2-of-n and absolute
majority voting. We will first develop the mathematics for treating the difference between
agreement and correctness.

III. The Correctness Factor

We first define a correctness factor ¢; which is the probability that an output is correct given that i
versions agree. If Pr (i) is the probability that i versions are correct and Pr,(i) is the probability

that i1 versions agree we have

¢; = Pr{output is correct | i versions agree]}

= Pr{i versions are correct} / Pr{i versions agree}
= Pr (i) / Pr,() 1)

Now

Pr{i versions agree} = Pr{i versions agree and are correct} +
Pr{i versions agree and are incorrect} (2)

Also, using "correct” and "incorrect” to mean "output is correct” and "output is incorrect”
respectively

Pr{incorrect | i versions agree} + Pr{correct | i versions agree} = 1
Hence,

Pr{incorrect | i versions agree} =1 - ¢;

Using the data domain approach of Scott et. al. [Sco83a,b], the reliability of an m-of-n system
which we denote by R, becomes

n

R = i Pr. (i) = zci Pr, (i) (3)

m

We expect that the sequence
C={cli=2,.,n}

is nondecreasing, i.e. that the chance of an output being incorrect does not increase as the number
of versions which agree increases. In particular, it is clear that

R < max {c;} 2 Pr, () < max {c¢;}

i=m
and hence if, for all i, ¢ < I then len < 1.

For tractability we will assume that all software versions have the same reliability or probability of
obtaining the correct answer for a given input. Let this reliability be p. Then we have

Pr, () = ,.C;p' (1-p)™"

where nCi denotes the number of combinations of n items taken i at a time. It follows that

Pr, () = Pr, () + ,G; (1-p)' p™* @)
In the following section we consider the impact of small output spaces on a voting strategy.

Table 3.1 gives correctness factors as a function of version reliabilities when the output space is

binary. The correctness factors converge to 1 only for p>1/r where r is the size of the output space.
(Indeed the sequence is decreasing for p < 1/r) .This is not an accident as we will show in the
following section.

IV. Small Output Spaces

Let the output space have cardinality r and assume as above that all versions have the same
reliability p. We further assume, for tractability, that the probability of failure of a version is
independent of the failure of any other. Assume a labeling of the outputs 1,2 ..., r such that output

1 is the correct one and occurs nj times. Let g; , i>2 denote the probability that the incorrect output
i will occur n; times where

np+ny+..+n=n
and

p+q2+q3+...+qk=1.

Then the probability that the correct output 1 will occur ny times is

n!l
P, (n)) = z mpn‘qu o Gt (5)

n=n-n
2: i 1

=2

where i >1. The reliability of an m-of-n system becomes

n

n!
Ron= D | 2 sraoT OB @ ©

n1=m a

E ni=n-nl

=2

Equation (6) does not allow for multiple incorrect outputs, however. Let M (i;nj) denote that i

replaces n; in equation (S). That is,

. n! o
MGin)=), Mol 1] P" a2 - Q' g e e @

znk=n-l

It follows that the correctness factor c; then becomes

(8)

where i lies between Ceiling{(n+1)/2] and n. The terms M(i;nj) are the probabilities of exactly i
identical incorrect outputs where 2<j<r. We note that the expression becomes considerably more
complicated when i lies between Floor [(n+r-1)/r] and Ceiling [(n+1)/2] since the M (i ; n;)'s may

have terms in common, i.e., it is possible to have more than one output occurring more than i
times. For example, in a case in which r=3 and n=11 it is possible that the correct output and one
incorrect output can each occur 5 times for the same input. In this case the denominator of equation
(8) overestimates the correct result. We assume henceforth that i > Ceiling {(n+1)/2].

For tractability we also assume the occurrence of each incorrect output has the same probability q,
and (r-1)q = 1-p. (This assumption is also 'best case’ in the sense that different probabilities tend to
effectively reduce the output space requiring higher version reliability. We will discuss this further
in the last section.) Equation (7) then becomes

s, - n! n, n-n
Méin)= 3 T ©
an =n-1i
Then we have
M(i;ny) = M(i;n3) =.= M(i;nk)
and equation (8) becomes
M(i;n)
c. (10)

T M(iin)+@-DM(i;np)

From [Tri82], the marginal probability function of M(i;nj) is given by
M(i;n)=,Ciq (19" (11)
When i = ny the equation becomes
M(i;n,)=Cp 1-p™ (12)
Substituting (11) and (12) into (10) gives

[,Cip' (1-p)™]

. — (13)
" (r-1),C; q' (1))

¢ = -

From our comments above and equation (3), it follows that we cannot have R, converging to 1
unless the sequence (c;} converges to L. In the following theorem we show that a necessary and

sufficient condition that lim(c;} = 1 is that p> I/r.

Theorem 4,1;

The sequence {c;} is increasing and lim {cj} =1 (as n->e=) if and only if p > Ur

(r22).

Proof:

The sequence {c;} shown in equation (13) can be simplified to

Ci = L (14)

14 (-1 (@) [(1=g) (1=p)]™™

In equation (14), let . .
Q; = (a/p)' [(1-g)/1-p)I™™ (15)

then equation (14) becomes

¢i = [1+(-1)Q;] .

Substitution of g=(1-p)/(r-1) into equation (15) gives

_ (l-p)2i - "(r--2+p)""i

. (16)
(r-1)"p'

Q;

We note that {c;]} is an increasing sequence and its limit is one if and only if {Q;} is a decreasing

sequence converging to zero. For the sequence {Q;} to be monotone we must have (Q;,1/Q;) < 1.

Since,
Qin _ (l—p)2 _ l-2p+p2 <1
QG T @24p)p p(r-2)+p

or

p(r-2) +p*> 1 —2p+p°
or

(r-2)p> 1-2p
or

m>1

Hence, we must have
p>1/r.

This proves the necessity.
Since the boundary reliability p is larger than 1/r, let A denote a positive number such that
p=lr+A

Substituting (1/r + A) into equation (16), we have

1 2i-n 1 n-i
(l——-A) (r—2+-+A)
r r

Q= i (17)
c-1" (-1— + A)

Then)
Qu__ (1-7-8)
&)

Because r is an integer and larger than or equal to two,

1 1 R
(-;+A)(r-—2+;+A)—(l—-r-—A =r+rA-1>1

Therefore, {Q;} is a decreasing sequence, and hence {c;} is an increasing sequence. When i = n,

Q, becomes

Q= (r —(rl)—+1)(r— —r?)rA)"

Because the fraction is less than one, Q,, approaches zero as n approaches infinity. Therefore, the

limit of {c;} is one when p is larger than 1/r. This proves sufficiency and completes the proof

of Theorem 4.1.

The following theorem gives sufficient conditions that

MR.mln-—-l

Theorem 4.2:

Let the output space have cardinality r and assume all components are independent
and have the same reliability p. Further assume unique correct outputs. Then the
following are sufficient conditions for

lim Ry =1

n —3oo

1) p>1r.

(2) The agreement number m is equal to Floor[(n+r-1)/r]. If Floor((n+r-1)/r] is
zero, m is set to two. (We note that if n becomes arbitrarily large then m
must also).

(3) When a version fails, the probability of occurrence of any incorrect output is
q, where q=(1-p)/(r-1).

Proof:

The probability that the j‘h incorrect item within the output space is generated by i versions is
MG ; nj) . From equation (11), the marginal probability of M(i ; n;) is
. i n-i
M(i;n;)=,Ciqj(l-qp
where qj is the probability that the jth incorrect output is generated. When j is not smaller than the

majority this incorrect output will be voted as correct in N-version programming. But it may or may
not be voted as the correct answer when j is a number between m and Ceiling[(n+1)/2]. Depending
on the voting strategy the probability that the jth incorrect item may be chosen as the correct answer
under m-of-n voting algorithm is no larger than

n
H;= chiqu(l—qj')n—l

it=m

In [Aik55], the above binomial formula is approximated using the following expression

L L 208 e (18)
H-=—_.—J. e Tdi+ —=I[(1~-k 2 +0 18
PoN2m Ui 6pV2n g

where
1
m nqj—i
k1= (19)
“/nq](l—q,)
k2= (20)

10

p =.,/ ng; (1 -q;)

and the error term o satisfies the inequality

A3+.18[1-2p] _3e
lo] < +e 2

o2

Letp = (1/r + A), where A is a positive number.
Because qj=q= 1-p)/(r-1),
we have g=q= (1/r)-0, where 9 =A/(r-1).
Substituting g5 = (1/r)-0 into equation (19) it becomes

1 1

- m-"(?‘a)‘z

Vo(F-2)(1- +9)

Since m 2 n/r, (m=Floor[(n+r-1)/r]), we have

1
8n—5

k, 2k'=

Vo(5-9)(1-7 +9)

1
3
=

0 1
- 3\/; ~ 28Vn

where

(21)

11

Obviously, when n approaches infinity, k' becomes arbitrarily large. Since k' is no larger than k
and ks (kj <kj),

lim‘(l =o0
n —eo
and
lim k2=°°
n —ee

When n approaches infinity, p becomes arbitrarily large. The error term @ in equation (18)

approaches zero, and the limit can be written as

2

. . 1 Ikz L 1-2g; L
lim H;= lim —_ di + [A-x9" 7] (22)
n-— oo] k, Xk, "’“[‘JZTE k, ©? 6p“2TC © “

The integral in the above equation is the accumulation function of the standard normal distribution.

Since k and k5 approach infinity the limit is zero.

In treating the limit of the second part, let

k2

(H)y=(1-Ke™ T (23)

Applying L'Hopital's rule and differentiating both numerator and denominator with respect to k

gives
o 1-2k
(Hy = —
ke?2
. 1
(Hy, = I a—
eZ +k’e7

Obviously, the numerator of the above equation approaches zero when k becomes very large.
Therefore, we have

12

Jim ()= lim () =0.

The second part of equation (22) consists of two items

K G

(1-k¥)e 7T and (1-KDe™ 7

Since the values of both approach zero as kj and k9 become arbitrarily large, the difference

between the two approaches zero. This establishes that as n becomes arbitrarily large the value
computed by equation (18) approaches zero.

Since the occurrence of each incorrect output has the same probability of appearing, the unreliability

of this m-of-n software system (F,;) = 1 - Ry satisfies

Fan <=1), ,Ciqd (- (24)

i=m

Therefore, when n approaches infinity the right side of the inequality is zero. Because Fp,j, should

be non-negative, it also approaches zero. The reliability of the system approaches one. This

completes the proof of Theorem 4.2.

V. Examples

In this section we present numerical examples which illustrate the effect on the system reliability of
different version reliabilities, different output space cardinality, and different voting strategies.

In Table 5.1 and Figure 5.1 we show results obtained using equation (6) with m=Ceiling{(n+1)/2]
and r=2. This is the classical majority voting approach with a binary output space. The boundary
version reliability in this case is 1/r = 0.5. The three rows in the middle of Table 5.1 show that the
version reliability must be larger than the boundary version reliability in order to improve the
performance of the system. Figure 5.1 shows that with a fixed version reliability larger than 0.5

13

system reliability increases when more versions are added. This, of course, is in agreement with
findings of Eckhardt and Lee {Eck85] who also studied the absolute majority voting process.

Again using equation (6) if we assume an output space cardinality of r=3 then Table 5.2 and Figure
5.2 show the effect on system reliability of varying the version reliabilities and the number of
versions m for the consensus majority voting strategy. The minimal agreement number is
Floor{(n+r-1)/r] = Floor{(n+2)/3]. The average boundary reliability of the versions is 1/r = 1/3.

Below this reliability value the sequence of correctness factors {c;} decreases and the system

reliability deteriorates as more versions are added. All versions are assumed to have the same
reliability, and all failure states (j=2,3) the same probability (1-p)/(1-r)=(1-p)/2 of being excited.

Table 5.3 and Figure 5.3 summarize the effect of the 2-of-n voting strategy for different numbers
of components. The reliability was computed using equations (3) and (4). The agreement number
is m=2, and it is assumed that the output space cardinality is infinite. As the number of components
in the system increases, the reliabilities rapidly decrease, but here this effect is related to the
number of components involved in the voting rather than the output space cardinality. Of course,

unless ¢y =c3=...=c=1 this voting strategy can lead to disaster.

The relationship between r and voting strategies is ﬁlusuated in Figure 5.4 for n=15. It is important
to note that both the absolute majority and the 2-of-n are effectively output space insensitive and can
lead to ambiguous or nonunique results. For odd n the former behaves as if r=2 since for absolute
majority voting the agreement number is Ceiling{(n+1)/2] which is equivalent to letting r=2 in the
agreement number equation for consensus majority voting, Floor[(n+r-1)/2]. For even n
Ceiling[(n+1)/2]>Floor{(n+2-1)/2]. Therefore from equations (3) and (4) it follows that given r=2
for even n the reliability of the system using absolute majority voting will be lower than when
consensus majority is used, while for odd n it will be equal to it. The 2-of-n voting behaves as if
r=infinity since for infinite r the consensus majority agreement number reduces to 2 (see Theorem
4.2). The consensus majority voting is r sensitive and therefore will perform better than absolute
majority voting for r>2 since Floor[(n+r-1)/r]<Ceiling{(n+1)/2]. The absolute majority represents a
lower limit of the consensus majority voting with r=2, while the 2-of-n is an upper limit.

Dependence of the system reliability on the output space cardinality is further illustrated in Figure
5.5 for consensus majority with n=5 and n=15. Failure state probabilities are the same for all j=2..r

incorrect outputs. We note that the asymptotic system reliability (r=es) corresponds to 2-of-n
voting approach, while the r=2 point corresponds to the absolute majority voting. Equations (3) to

14

(6) with consensus voting and simulation were used to compute the data points shown in Figures
5.4 and 5.5.

V1. Simulation

The relationships given in section [V were derived by assuming that the probabilities of all failure
states are equally likely. In practice this may not be true. In fact, it is quite possible that one of the
failure states j, 2<j<r is preferentially excited because of very high visibility (under given input
conditions) of the fault(s)/errors mapping into it. In the extreme, even in a large output space, this
leads to the behaviour of the fault-tolerant system as if the output space cardinality is small, i.e.
highly visible errors force a partitioning on the output space into equivalence classes which
effectively reduces the output space cardinality.

Another approximation that was made is the assumption that all the components have the same
reliability. In practice a range of reliabilities around a mean value, p, would be expected. To study
the influence of the scarter of individual component reliabilities and of the scatter in the probabilities
of incorrect outputs, and to check on analytical solutions we used simulation.

The model we have used is illustrated in Figure 6.1. A single component i is assumed to exhibit a
probability q; = (1-p;) of failing. We do not separately model different errors contributing to this
average failure rate, and we assume that all the components exhibit mutual independence with
respect to the probability of failure. For each simulated input the component state (failed,
not_failed) is chosen randomly with the probability, q;, assigned to that component. If the final
component state is a failure state the actual output state j, one of the (r-1) incorrect outputs, is
selected randomly with the conditional probability P(jli-failed) associated with that output. The

process is repeated for all n components. The final states of the components are then voted using
the absolute majority, consensus majority and 2-of-n strategies.

Simulation of systems described by the equations given in section IV yielded resuits that coincided
with the computations obtained using analytic solutions to within the confidence interval of the

simulation runs.

The influence of the scatter in component reliabilities is illustrated in Figures 6.2 and 6.3. The

18

standard deviation of component reliability, the square root of 0p2=2[(pi—p)2/(n-l)], where p =

Zpj/n , for i=1..n, is used to measure the dispersion of the component reliability values. In Figure

6.2 we plot system reliability against the standard deviation of the component reliability using n=5
with r=4 and p=0.95. It was assumed that each incorrect output state j has an equal probability
(1-p)/(r-1) of being selected. In Figure 6.3 we have n=5, r=4 and p=0.623. Each pair of points
(majority-absolute) shown in Figures 6.2 and 6.3 was obtained from a separate 100,000 case
simulation run.

From the figures we see that the larger the standard deviation of the component reliabilities the more
reliable the system. This confirms that from the point of view of component reliabilities the
equations discussed in section IV provide a conservative estimate of the system behaviour since
they use the same component reliability value for all components and imply a standard deviation of
zero. Of course, if scatter is large enough then it may happen that one of the components is in fact
more reliable than the system as a whole under some or all of the discussed voting strategies.

For example, given that n=5, r=4, and p=0.623 with cp=0.186 we can have p=0.759, p»=0.522,

p3=0.357, p4=0.819, p5=0.658. These component reliability values give system reliability of

0.735 for absolute majority voting, and 0.851 for consensus majority voting. Clearly, component
1=4 on its own is more reliabile than the 5-version system under absolute majority vote, and is
marginally worse than the system under consensus majority voting. As another example consider a

system composed of more reliable components. Let n=5, r=4, and p=0.95000 with op=0.05333

which we can produce with p;=0.96456, p=0.91313, p3=0.87732, p4=0.99999, p5=0.99500.

The resulting system reliability under absolute majority voting is 0.99953, and under consensus
majority voting is 0.99979. Component i=4 is more reliable than the system under either of the
strategies. Values in first example were computed using 2,000,000 case simulations giving a 95%
confidence range about obtained system reliabilities of about + 0.00003. In the second example we
used a 10,000,000 case simulation giving 95% confidence limits of about + 0.000013 about the
reported values.

Therefore, if all the components are nearly equally reliable, i.e. scatter is small, then using
equations given in section I'V to predict system reliability will provide a conservative estimate of
this reliability. But if the scatter of the reliabilities is large it means that at least one of the

16

components is much more reliable than the average over all the components, and it may happen that
there is at least one component which is more reliable than the N-version system. In such a
situation, one should either reduce the system by discarding the most unreliable component(s), or
perhaps employ modified voting strategies. To illustrate this consider the following.

Returning to the second example above and discarding component p3=0.87732 and keeping the

other four, results in system reliability of 0.99635 under absolute majority voting and 0.99937
under consensus majority voting. By discarding p3 and pj we obtain 0.99979 for both

absolute and consensus majority voting. It is only when we reduce the system down to two
components that the sytem reliability becomes larger than that of component 4. Simulations ran for
10,000,000 cases giving 95% confidence limits on system reliability of about + 0.00001. Clearly,
when working with high reliability components, it is very important to have a well balanced set of
components of nearly equal reliability in order to achieve best resuits. A possible adaptive voting
strategy would be given information about the individual component reliabilities and may, for
example, attach more importance to answers from sets containing the most reliable component(s).
This is a subject for future research.

Figure 6.4 illustrates the effect of variation in the conditional probabilities of selecting incorrect

th

output states. If qij=qu(jli-failed) represents the probability of selecting j* incorrect output for ith

component, where P(jli-failed) is the conditional probability that jth state will be chosen, then

qi=2qij=inP(jli-failed)=1-pi, j=2..1. Let P;=EP(jli-failed)/(r-1)=1/(r-1) be the average conditional
probability. Then the standard deviation shown in Figure 6.4 is the square root of O‘PZ =1

[(P(jli-failed)-Pi)zl(r-Z)], where the sum is over j = 2..r output states. Simulations were performed

assuming that for individual component reliabilities pj=p)=...=p,=p. We see that the larger the

scatter of the conditional failure probabilities, assuming the same p for all components, the more the
system behaviour tends towards that associated with the lower r values, i.e. toward that exhibited
when absolute majority voting is employed. The curve for the latter is, of course, level since
absolute majority voting is r insensitive (effective output space becomes binary, r=2). Simulation
for each pair of points ran for 100,000 test cases.

As an example, let n=5, p=0.95 (all components), and r=4 with equal conditional failure
probabilities for all incorrect outputs (j=2,3,4; P(jli-failed)=1/3). Then absolute majority voting has

17

system reliability of 0.99884 and consensus majority voting has reliability 0.99994. On the other
hand, if we let r=11 but P(2li-failed)=0.99910 while for j=3..11 P(jli-failed)=0.00010, then
consensus majority reliability drops to 0.99884 which is equal to that obtained by absolute majority
voting, and is equivalent to an effective reduction of the output space cardinality to r=2. Example
values were obtained by simulation, and their standard deviation is 0.000025.

The above discussion leads to the conclusion that for conservative estimates we should use r=2 and
an average p value. However, in practical applications use of consensus majority voting is
recommended since it provides automatic adaptation of the voting strategy to the component
reliability and output space characteristics. In the lower limit the reliability provided by consensus
majority is never worse than the absolute majority voting, while in the upper limit it is equivalent to
the 2-of-n voting strategy.

VII. Conclusions

We have analyzed fault-tolerant software systems using N-Version Programming and different
voting algorithms assuming output spaces with small cardinality and version failure independence.
We have proposed an alternative voting strategy which we call consensus majority voting to treat
cases when there may be agreement among incorrect outputs, a case which can occur with small
output spaces. Consensus majority voting provides automatic adaptation of the voting strategy to
varying component reliability and output space characteristics. We show that if r is the cardinality
of the output space then 1/r is a lower bound on the average reliability of fault-tolerant system
versions below which system reliability begins to deteriorate as more versions are added.

VIII. References

[Aik55] H.H. Aiken et. al, "Tables of the Cumulative Binomial Probability Distribution", Harvard
University Press, Mass., 1955.

[Avi77] A. Avizienis and L. Chen, "On the Implementation of N-version Programming for
Software Fault-Tolerance During Program Execution”, Proc. COMPSAC 77, 149-155, 1977.

[Avi84] A. Avizienis and P.A. Kelly, "Fault-Tolerance by Design Diversity: Concepts and
Experiments”, Computer, Vol. 17, pp. 67-80, 1984.

[Eck85] D.E. Eckhardt, Jr. and L.D. Lee, "A Theoretical Basis for the Analysis of Multiversion
Software Subject to Coincident Errors”, IEEE Trans. Soft. Eng., Vol. SE-11(12), 1511-1517,
1985.

[Kni86] J.C. Knight and N.G. Leveson, "An Experimental Evaluation of the assumption of
Independence in Multiversion Programming IEEE Trans. Soft. Eng., Vol. SE-12(1), 96-109,

18

1986.

[Sco83a] R.K. Scott, "Data Domain Modeling of Fault Tolerant Software Reliability”, Ph.D.
Dissertation, North Carolina State University, Raleigh, North Carolina, 1983

[Sco83b] R.K. Scott, J.W. Gauit, D.F. McAllister and J. Wiggs, "Experimental Validation of Six
Fault-Tolerant Software Reliability Models", Proc. IEEE 14th Fault-Tolerant Computing
Symposium, pp. 102-107, 1983

[Sco84] R.K. Scott, J.W. Gault, D.F. McAllister and J. Wiggs, "Investigating Version
Dependence in Fault-Tolerant Software”, AGARD 361, pp. 21.1-21.10, 1984

[Sco87] R.K Scott, J. W. Gault and D. F. McAllister, "Fault-Tolerant Reliability Modeling",
IEEE Trans. Soft. Eng. Vol. SE-13, No. 5, pp. 582-592, 1987

[Tri82] K.S. Trivedi, "Probability and Statistics with Reliability, Queueing, and Computer
Science Applications, Prentice-Hall, New Jersey, 1982.

[Vou85] M.A. Vouk, D.F. McAllister, K.C. Tai, "Identification of correlated failures of
fault-tolerant software systems", in Proc. COMPSAC 85, 437-444, 198s.

[Vou86] M.A. Vouk, D.F. McAllister, and K.C. Tai, "An Experimental Evaluation of the
Effectiveness of Random Testing of Fault-tolerant Software”, Proc. Workshop on Software
Testing, Banff, Canada, IEEE CS Press, July 1986.

19

Table_3.l Correctness factors as a function of version reliability under the assumption of version
failure independence for 15 functionally equivalent program versions of equal reliability, p.
The output space cardinality is r=2, the boundary reliability is 1/r=1/2 =0.5.

G
i p=049 p=0.50 p=0.51 p=0.80

2 0.6083 0.5000 0.3917 0.0000
3 0.5891 0.5000 04110 0.0000
4 0.5696 0.5000 0.4304 0.0001
S 0.5498 0.5000 04502 0.0010
6 0.5300 0.5000 04700 0.1154
7 0.5100 0.5000 0.4900 0.2000
8 04900 0.5000 0.5100 0.8000
9 04700 0.5000 0.5300 0.8846
10 04502 0.5000 0.5498 0.9990
11 04304 0.5000 0.5696 0.9999
12 04110 0.5000 0.5891 1.0000
13 0.3917 0.5000 0.6083 1.0000
14 0.3728 0.5000 0.6272 1.0000
15 03543 0.5000 0.6457 1.0000

20

107 Admd—~twA=A=O
Absolute majority
09t voting

0.8 + |m=Ceilingl(n+1)/2] /

071 2{/'/
06 ¢+
system i
reliability S n=3 3 .
04+ ﬂ Cardinality = 2
03 +] /
n=1S
021 / ‘7"—
| / 5 a—n=35

/
A A
O.OU-@'-’Q-/A"-JZ-H’ : + ' " : '
00 01 02 03 04 0S5 06 07 08 09 10

component reliability

J
-

Figure 5.1 System reliability vs. component reliability for absolute majority voting strategy.
Number of components used for voting is "n", the agreement number is m, r=2 , and boundary
version reliability is 1/r=0.5.

I .0 T k‘-“-‘?’.‘-‘-‘—x
Output space 2 ﬁ?

A
4 J/
0.9 cardinality = 3 /‘ /
n=5

08 ¢+ X /
0.7 1 n=7 ‘///
0s] % n=1
system o | n=15—A4
reliability %
04 ¢+ Concensus majority
03+ voting
m=Floor{(n+2)/3]

02+ {/

4N
0.1 1 /

ca A~

0.0 X<k<a<=A_, +

00 0.1 02 03 04 05 06 07 08 09 1.0
component reliability

Figure 5.2 System reliability vs. component reliability for the consensus majority voting
strategy. The number of voting components is "n", the agreement number is m, r=3, and the
boundary version reliability is 1/r = 0.3333.

21

Table 5.1 The reliability of the N-version programming system using majority voting (r=2).
Reliability of the system is p, the number of components participating in a vote is n.

P n=3 n=7 n=15 n=35

0.0500 0.00725 0.00039 0.00000 0.00000
0.1000 0.02800 0.00273 0.00031 0.00000
0.1500 0.06075 0.01210 0.00361 0.00000
0.2000 0.10400 0.03334 0.00424 0.00003
0.2500 0.15625 0.07056 0.01730 0.00070
0.3000 0.21600 0.12604 0.05001 0.00642
0.3500 0.25175 0.19985 0.11323 0.03363
0.4000 0.35200 0.28979 0.21310 0.11431
04500 0.42525 0.39171 0.34650 0.27514

0.4900 0.48500 0.47813 0.46861 0.45257
05000 050000 050000 050000 050000
05100 051500 052187 053139 054743

0.5500 0.57475 0.60829 0.65350 0.72486
0.6000 0.64800 0.71021 0.78690 0.88569
0.6500 0.71825 0.8001S 0.88677 0.96637
0.7000 0.78400 0.87396 0.94999 0.99358
0.7500 0.84375 0.92944 0.89270 0.99930
0.8000 0.89600 0.96667 0.99579 0.99997
0.8500 0.93925 0.98790 0.99639 1.00000
0.9000 0.97200 0.99727 0.99969 1.00000
0.9500 0.99275 0.99961 1.00000 1.00000
0.9900 0.99990 1.00000 1.00000 1.00000
0.9990 1.00000 1.00000 1.00000 1.00000

22

Table 5.2 The reliability of the N-version programming system using consensus majority voting

(r=3). Reliability is p, the number of components participating in a vote is n.

p

n=3 n=7

n=11

n=15

0.0500
0.1000
0.1500
0.2000
0.2500
0.3000

03300
03330
03333
03340
03400

0.3500
0.4000
0.4500
0.5000
0.5500
0.6000
0.6500
0.7000
0.7500
0.8000
0.8500
0.9000
0.9500
0.9900
0.9990

0.00247 0.00131
0.03590 0.01708
0.07843 0.05064
0.13472 0.10502
0.20239 0.17870
0.27884 0.26785

032779 0.32662
033266 0.33258
033333 0.33333
033468 0.33484
034448 0.34683

0.36727 0.37141
0.44704 0.47123
0.53321 0.57412
0.61719 0.67090
0.69650 0.75753
0.7689% 0.83117
0.83276 0.89030
0.88653 0.93474
0.92944 0.96549
0.96128 . 0.98458
0.98253 0.99470
0.99448 0.99887
0.99926 0.99992
0.99999 1.00000
1.00000 1.00000

0.00049
0.00646
0.02888
0.07584
0.15164
0.25339

032511
033251
033333
033499
034994

0.37519
0.50430
0.62970
0.74145
0.83292
0.90141
0.94790
0.97604
0.99804
0.99730
0.99947
0.99995
1.00000
1.00000
1.00000

0.00008
0.00243
0.01584
0.05420
0.12884
024154

029537
033237
033333
033527
035280

0.38248
0.53410
0.67710
0.79646
0.88482
0.94252
0.97534
0.99125
0.99758
0.99953
0.99995
0.99999
1.00000
1.00000
1.00000

Table 5.3 The reliability of the N-version programming system using 2-of-n voting strategy
(r=c<). System reliability 1s p, the number of components participating in a vote is n.

p n=3 n=7 n=11 n=15

0.0500 0.00725 0.00019 0.00001 0.00000
0.1000 0.02800 0.14969 0.30264 0.45096
0.1500 0.06075 0.28342 0.50781 0.68141
0.2000 0.10400 0.42328 0.67788 0.83287
0.2500 0.15625 0.55505 0.80290 0.91982
0.3000 0.21600 0.60758 0.88701 0.96473
0.3500 0.28175 0.76620 0.93492 0.98582
0.4000 0.35200 0.84137 0.96977 0.99783
0.4500 0.42525 0.89758 0.98601 0.99831
0.5000 0.50000 0.93750 0.99414 0.99951
0.5500 0.57475 0.96429 0.99779 0.99989
0.6000 0.64800 0.98116 0.99927 0.99997
0.6500 0.71825 0.99099 0.99980 1.00000
0.7000 0.78400 0.99621 0.99995 1.00000
0.7500 0.84375 0.99865 0.99999 1.00000
0.8000 0.89600 0.99963 1.00000 1.00000
0.8500 0.93925 0.99993 1.00000 1.00000
0.9000 0.97200 0.99999 1.00000 1.00000
0.9500 0.99275 1.00000 1.00000 1.00000
0.9900 0.99970 1.00000 1.00000 1.00000
0.9990 1.00000 1.00000 1.00000 1.00000

24

o7 —dA—A—A—A=O=2—fing =l -
1.0 A ,O’ojpl'.-.-. :ﬂ:ﬂ
0.9 nI15/‘ .
na7
0.8 1 /
0.7 A
0.6 1 /n-5
System /
0.5t]
rellability A //
0.4t n Infinite Cardinality
0.3 / /A voting agreement
/' /'A number=2
0214 /m /A
s
0.1 "/\é.,A/A
0.0 n#B=2"__, ' ' + ' + 4 —t
0.0 0.1t 0.2 03 04 05 06 0.7 0.8 0.9 1.0

Component rellability

Figure 5.3 System reliability vs. component reliability assuming infinite cardinality of the output

space under 2-of-n voting strategy.

1.0~

~0—2—uO=0—Q-A=A=A-A—A-A-d
A AT
0.9+ / A A
2-of-n / /
0.8+ =00 O/ /A A
/
0.7 ¢ AN a
0.6 + ?’ r=3
System o5l Con§en§u§{ ‘/ 15 components
reliability - Jd o maijority
0.4 1 / A /
A
wl [[] 7
-y /Absolute majority
0.2 ¢ . / / /A rad
014/ p poA
VS oL
/A A”
0.0 A=f—AwiTawd™, ‘ —

00 01 02 03 04 05 06 0.7 08 0.9

1.0
Component reliabliity

Figure 5.4 System reliability vs. component reliability for n=15 in the range r=2 to r=eo, under
appropriate voting strategies. Probability of each j=2..r failure state is (1-p)/(r-1). Simulation was

used to compute the r=10 curve.

25

107 yeeam—o—0—s p=0.80—o

L
09 ¢
0.8 ¢ cﬂ’.—o-—”_"
0.7 4 ofﬂo p=0.50 5 components
0.6 ¢ / Consensus Majority

System 0s 4 voting
rellability
0471
p=0.20

0371

———— e]

i —=
0.2 1 '.‘.
0.11 ./' p=0.05
) 10 100 1000 10000

Output space cardinality (r)

Figure 5.5a System reliability vs. Output space cardinality for n=5 using consensus majority
voting. All components have the same reliability, p. Probability of each j=2..r failure state is
(1-p)/(r-1). Majority of the data points were computed by simulation.

1.0 090 04¢0 0 b o —& p=0.80 ®

o
0.9 d

II u
0.8 o
0.7 /.
0.6 s p=0.20
System o
rellabllltyo’s u 15 components
0.4 .
. Consensus Majority
0.3 n voting
"
0.2] _
] _a p=0.05
0.0 +—aZgorod + + '
1 10 100 1000 10000

Output space cardinality (r)

Figure 5.5b System reliability vs. output space cardinality for n=15 using consensus majority
voting. All components have the same reliability, p. Probability of each j=2..r failure state is
(1-p)/(r-1). Majority of the data points were computed by simulation.

26

Output space ﬂ)
cardinality = r P(2}i-failed)

P(3|i-failed)

&)

P(rli-failed) o
[4
[

ONERG

Success Failure states

ith component

b)

UVoters

ONG

Absolute Ma jority
Consensus Ma jority

2-of-n

H Final system
[]

state
@ Components

Figure 6.1 Schematic representation of the simulation states for a single component (a), and the
voting process (b). Individual component reliability is represented by p;, and the conditional

probability of failing with state j =2 .. r by P(jli-failed).

27

1.0000 1

Simulation P Y.

/.—_—_.

0.9998 1

o—"
Consensus majorly/ /
0.9996 - -0
\0/

System , 4994 VO

rellability

5 components

0.9992 + ? Average component
Absolute majority / rellability = 0.95
Cardinality = 4
0.9990 —e
,o-o—‘\,_.
0.9988 ' R

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Standard deviation of the component
rellabllity

‘Figure 6.2 System reliability vs. the standard deviation of the component reliability. Probability
of each failure state is (1-p)/(r-1) = 0.05/3.

28

5 components
Average component reliability = 0.623
0.95 11 Cardinality = 4
Identical conditional fallure probability

0.90 T

Consensus majority

0.85 -+ -—o/o—

System e
rellabllity .
0.80 ¢ Simulation
0.75 T
Absolute majorit
 S— ._.o_—-—-——'"'—"' jority
0.70 l + + + 4
0.0 0.1 0.2 0.3 0.4
Standard deviation of the component
reilability

Figure 6.3 System reliability vs. the standard deviation of the component reliability. Probability
of each failure state is (1-p)/(r-1) = 0.377/3.

Simulation
0957
5 components
90 1 Component reiiabillty = 0.623
0. Cardinality = 4
Average conditlonal failure probability = 1/3
O.BSir
System T —
retiability ’\\ Consensus majority
°
- ‘.\%\
0.75 Absolute majority \0\.
?—o———o——o—oo@“oo-——oo——o-oﬁo
0.70 4 + + ¢ + + J

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Standard deviation ot the conditional
tailure probability

Figure 6.4 System reliability vs. the standard deviation of the conditional failure state
probability. All components have identical reliability p = 0.623.

NASA/NAG-1-667/R/3.0/NCSU.CSC.(DFM,KCT,MAV)/Oct-87

Appendixil 88-13865

™

COMPUTER STUDIES

TECHNICAL REPORT

EFFECTIVENESS OF BACK-TO-BACK TESTING

Mladen A. Vouk, David F. McAllister
David E. Eckhardt

Alper Caglayan
John P. J. Kelly

TR-87-08

North Carolina State University

Raleigh, N. C. 27650

EFFECTIVENESS OF BACK-TO-BACK TESTING*

Mladen A. Vouk, David F. McAllister
North Carolina State University
Department of Computer Science, Box 8206, Raleigh, NC 27695-8206

David E. Eckhardt
National Aeronautics and Space Administration
- Langley Research Center, Hampton, Va 23665

Alper Caglayan
Charies River Analytics
55 Wheeler St., Cambridge, Ma 02138

John P. J. Kelly
University of California, Santa Barbara
Department of Electrical and Computer Engineering, Santa Barbara, Ca 93106

Key Words: Software fauit-tolerance, software testing, back-to-back testing,
correlated errors, software reliability

Abstract

Three models of back-to-back testing process are described. Two models treat the case
where there is no inter-component failure dependence. The third model describes the
more realistic case where there is correlation among the failure probabilities of the
functionally equivalent components. The theory indicates that back-to-back testing can,
under right conditions, provide a considerable gain in software reliability. The models
are used to analyse the data obtained in a fauit-tolerant software experiment. [t is shown
that the expected gain is indeed achieved, and exceeded, provided the inter-component
failure dependence is sufficiently smail. However, even with relatively high correlation
the use of several functionally equivalent components coupled with the back-to-back
testing may provide a considerable reliability gain. Implications of this finding are that
the muitiversion software development is a feasible and cost-effective approach to
providing highly reliabile software components intended for fault-tolerant software
systems, on condition that special attention is directed at early detection and elimination
of correlated faults.

(*) This research was supported in part by NASA grants NAG-1-667, and NAG-1-512,
and contract NAS-1-17705.

1. Introduction

Fauit-tolerance is or will become part of many critical software and hardware
systems [e.g., Mar82, Mad84, Tro8S, Bis86]. There are two common methods for
achieving software fault-tolerance. These are the N-version programming approach and

.

the recovery-block approach [Ran?75, Avi84].

Although existing fault-tolerant software (FTS) techniques can achieve an
improvement in reliability over non-fault-tolerant software, experiments show that
failure dependence among FTS system components may not be negligible in the context
of current software development and testing techniques [Nag82, Sco84, Nag84, Vous8s,
Wig84, Kni86, Kel86]. Correiated coincidental component failures may be disastrous in
current FTS approaches and can seriously undermine any reliability gains offered by the
fault-tolerance mechanisms (e.g. Sco83a, Sco84, Avi84, Eck85S, Vou86al. Hence it is

important to detect and eliminate them as early as possible in a FTS life-cyele.

Throughout this paper we shall use the terms "component(s)", "version(s)",
"functionally equivalent software components", and “software components"
interchangeably. The terms "coincident", "correlated" and "dependent" failures (fauits)
have the following meaning. When two or more functionally equivalent software
components fail on the same input case we say that a coincident failure has occurred,
and k failing components give a level-k coincident failure. The fault(s) causing a levei-k
failure we shall call level~k fault(s). When two or more versions give the same incorrect

response, to a given tolerance, we say that an identical-and-wrong (IAW) answer was

obtained. If the measured probability of the coincident failures is significantly different
from what would be expected by random chance on the basis of the measured failure
probabilities of the participating components (e.g. Eck85, Kni86, Vou85], then we say

that the observed coincident failures are correlated or dependent, i.e. if Pr denotes

probability, then

Pr{ version(i) fails | version(j) fails } # Pr { version(i) fails }.
If a fauit, or a fault combination, results in a IAW answer from k components we say that
the falut(s) has (have) "span" of size k. The fault span is important because with the
probability of excitation of the fault (fault intensity or visibility) it determines the level

of the inter~component failure correlation for that fault.

The back-to-back testing technique discussed here involves pairwise comparison of
all functionally equivalent components. Whenever a difference is observed among
responses, the problem is thoroughly investigated and appropriate action is taken. I[f all
answers are identical to within a specified tolerance then a "no detected failure" event is
said to occur. We say that back-to-back testing fails when all the components fail with
(within tolerance) [AW answers. Qur experiments indicate that these corrrelated fauits

occur in practice but can be prevented or reduced.

In section 2 we present three models of the back-to-back testing process. In
section 3 we use the models to analyse and discuss the experimental information
concerning the effectiveness of the back-to-back testing and the muitiversion

development approach.
2. Failure Models

Our goal is to model the probability that k versions obtain [AW answers and
compare it with experimental findings. We will present three models, two of which
assume that the versions fail independently and the third attempts to capture the
correlation between versions. We assume that m functionally equivalent software
components of versions were deveioped by independent programming teams from
equivalent specifications. We will select a subset of size k from these m versions which

we will call a k-tuple.

Back-to-back testing of k components {ails to signal a potential error wnen 1il

3
the components agree, to a given tolerance, on a value which is a wrong answer. This
results in an "undetected" failure. Of course, if k=1 i.e. single component, then every test
case (run time errors resuiting in operating system intervention excepted) is a potential
"undetected" failure in the absence of an oracle or "golden" program. In the following
text the term "agreement" means equality between two responses (answers) within a

tolerance TOL. It is also assumed that a "golden" or oracle answer is available.

Consider a k-tuple of components. The following two events are independent of

the golden program (see examples in Figure 1).

* If all k components agree on an answer, a "COLLECTIVE AGREEMENT" event

occurs.
®* If there is any disagreement among the components (components being compared

pairwise with each other, C(k,2) comparisons in all), a "COLLECTIVE WARNING"

event occurs.

The following event depends on the goiden answer:

* [f all k components agree with the "golden" answer a2 "SUCCESS" event occurs.

The following three events are cailled FAILURE events and they also depend on the

golden answer:

® |f one or more of the component answers disagree with the golden answer a

"ONEPLUS FAILURE" event occurs. This is a pessimistic (conservative) view of the

failure recognition process, since one or more failures is considered to fail the k-

tuple.

The following events are subevents of the ONEPLUS FAILURE event:
® [f the majority of the components disagree with the golden answer then we say that a
"MAJORITY FAILURE" event has occurred. The majority of k components is defined

as [(k+1)/27 . [t is possible to define other intermediate states such as the majority

of components agreeing with the golden answer, two-or-more disagreeing etc.
® If all the components disagree with the golden answer then we say that an "ALL
FAILURE" event takes place.
Other measure of "distance!, such as the difference between the mean value of the
component answers and the golden answer, may coalesce the ONEPLUS through ALL

FAILURE events into a single event.

Combinations of the abave "elementary" events produce the following mutually

exclusive and collectively exhaustive back-to-back testing events (see Figure 1):

* If a SUCCESS occurs together with a COLLECTIVE AGREEMENT then an "OK"
event occurs.

* [f a SUCCESS occurs together with a COLLECTIVE WARNING then a "FALSE
FLAG" event occurs. The back-to-back testing signals an error when one is not
present. We note that la-bl < TOL and |b-c| < TOL does not imply that la-el < TOL.
Hence, FALSE FLAG events are not inconsistent.

* If a FAILURE occurs together with a COLLECTIVE WARNING we say that a "FLAG"
event has occurred. The back-to-back testing correctly detected a potential failure
(fault).

* |f FAILURE occurs simultaneously with a COLLECTIVE AGREEMENT then we say
that a NO_FLAG event occurs. This is the most significant back-to-back testing
event. A potential failure exists (the failure is fully confirmed if ALL FAILURE has

occured) but was not detected by back-to-back testing.
2.1 IAW Models

Formally, the probability that a given subset of k versions or a k-tuple
obtains a [AW answer can be written as a conditional probability as follows. Let A

denote the event "k versions obtain identical answers" (COLLECTIVE AGREEMENT).

"(4) @veds 1UIAA HDBAQ-01-}IBY Y] JO Puk ‘(¥) SJUDAD ful s Horg-01-3orq AJejuawa)s
pue ‘JOJ, 2ouBJa|0} 3Yl uaamiaq diysuotjerpa ayl Jo uoneasn uy 1 ainbtg

ONINHYM JAI1D3170D + 3HNIVS vl =ovdy

e pjob qQ o
“ i —H
101 01
<+ —> < >
JyNivd
INIWIFUOV FAILOITIOD + FUNTIVL ISN1dINO! = DV 14 ON
Gluquldz e qQ 2 pjoB
v ovid “ “ , _
< P ﬂp —»
INaW33HOV ONINHVM
JAILDITTIOD JALLDITIOD ONINUYM JAI1O3TIOO + SS300NS = OV 14 ISV
e plo8 q 9
} —+
= —*,
NO Hv1d4d 3STvd o1
SS3IDONS LNIWIIHOY IAILOTT0D + SS3OIMNS = MO
. e pjoB q 2
—t——
g >

a (e

6
an B the event "k versions fail simultaneousiy" (ALL FAILURE), and A&B their

intersection (NO_FLAG), then

P(A&B) = P(AIB)P(B) (1)
Let p; represent the probability that component i, 1 < i < m, fails on a given
input, and let P be the mean failure probability per test case per component for the

set of m components. Then

B=(2pj)m (2)

where the sum is from i=1 to m.

It is possible to construct C(m,k) sets of k-tuples from a pool of m
components, where C(m,k) is the number of combinations of m objects taken k at a
time. If the failure probabilities are independent then the probability of an ALL

FAILURE for the jth k-tuple is as follows:

Pj(k) =] pr = P1P2 - Dk (3)

We will use P(k) to denote the average of the Pj(k)'s over all C(m,k) subsets:

P) = [2 Py(k)}/C(m,k) (4)
where sum is from j=1 to C(m,k). We note that it can be shown that ([3)k > P(k). We
also note that if Py denotes the average failure probability of a single k-tuple, then
the average of this value over C(m,k) k-tuples is p. In the following text, unless

stated otherwise, all the quantities are averaged over C(m,k) k-tuples.

From the definition of the NO_FLAG event it follows that the probability of
this event is less than or equal to the probability of a FAILURE event. Let Py(k) be
the probability of an [AW answer from all k components of a k-tupie (ALL FAILURE

event). Then

Pi(k) = X-(k)Pr(k versions fail simultaneousiy) (5)

7
where X' (k) is the conditional probability of an identical level-k answer (given an
ALL FAILURE event occurred). This quantit y has , in general, two components. One
is due to the cardinality of the output space, and the second component is the failure
(fauit) dependence. The probability of I[AW answers increases as the cardinality of
the output space-'decreases. For low cardinality (finite) output spaces the probability
of a coincident failure of two or more components resulting in an [AW answer may be
quite high without any correlation being present. For example, if output space is
binary, then all programs which are incorrect will produce the same wrong answer,

i.e. the probability of [AW answers is 1 for failing versions.

In our first model we approximate the probability of event B in equation (1)
by the relationship Pr(k versions fail simultaneously) = (['J)k . Therefore in Model I

the probability that back-to-back testing fails to detect an error (NO_FLAG event) is

Py(k) = [s(kxﬁ)"- (6)

where x's(k) represents the component of X'(k) associated with the output space
cardinality effect. Since independence is assumed the failure (fault) correlation is
zero. The space cardinality component X's(k) is expected to be a decreasing function
of the size of the error output space, x, and the number, k, of the interacting
components (Sun85). Hence, a shape similar to 1/xX would be expected. In practice
x;(k) will also reflect the sampling strategy over the input/output domains, and will
be a composite function over all the variables involved in determining the
correctness of an answer. See [Sun85] for a more detailed discussion of this

phenomenon.

Equations (1), (3) and (4) yield Model I for the failure probability of the

back-to-back testing approach:

i) = {5(kIP(0) (7)

8

When pj's are equal to, say p, for all i, then the two models become
equivalent, i.e. Py(k) =X‘S(k) pk . The differencelvin the estimates offered by the two
models depends on the variance of §. It can be shown that Model I will aiways offer
a more conservative estimate of the back-to-back failure probability than Model II.

Since Xs(k) < 1, P(k) and (f>)k provide upper bounds or worst-case values for Py(k) .

As an illustration of the detrimental influence of inter-component failure
correlation consider the following. Let P.(k) denote the average probability of an
ALL FAILURE event in an environment where inter-component faijlure (fault)

correlation is present. Then Model III is given by:

Pi(k) = X(k)Pc(k) (8)

The components of X‘(k) are

{6 = Yster Y etier-Plsée) (9)
where X‘c denotes the influence of the fault correlation, and P(s&e) the probability

of the intersection of the space and correlation events.

The conditional probability x‘c(k) is a funetion of the number of components
containing the fault(s) resulting in an IAW answer (fault span), the visibility (or
excitation probability under given sampling conditions, [Ram82]) of the fauit(s), and

of the number of such faults in the set under consideration.

Let X's(k)=0.This is often a reasonable assumption. Also assume that all the
failures are caused by the same fault, or fault combination, and that all failures
result in [AW answers from s components, i.e. the fault span is s. Then, given an
input which results in failure, and provided k < s, we can construct C(s,k) k-tuples
where all components fail with an [AW answer, and C(m,k) k-tuples in all. Therefore
the probability of randomly choosing a k-tuple exhibiting level-k [AW is

C(s.k)/C{m,k). If we assume that -he probaoility of failure on input is § on the

9 -
-average, then the probability that back-to-back testing fails to signal a level-k
failure is

Py(k) = [C(s,k)/C(m,k)] D (10)
When s<k, C(s,k) is defined to be zero. Note that if failures are completely

uncorrelated fault span is one (s=1), and then Py(k>1)=0

3. Experimental Resuits

In the summer 1985 a FTS experiment took place sponsored by NASA
Langley Research Center. The participants were the authors, the Research Triangie
Institute (NC), the University of [llinois (Urbana-Champagne, [1), and the University
of Virginia (Charlottesville, Va). A detailed description of the experiment is given in
(Kel86). The programmers worked in two-person teams formed by random seiection.
All the programmers worked from the same specification. The programming teams
were responsible for the software design, the implementation and the testing phases

of the life-cycle. The experimenters provided acceptance testing of the product.

The experiment resuited in 20 functionally equivalent programs for solving a
problem in inertial navigation. The problem specification was new, written for the
experiment, and was not debugged via a "pilot” version of the code prior to the
production of the redundant components . This resuited in a very heavy query traffic
between the experimenters and the programming teams during the component design

phase and in the initial stages of the implementation.

The acceptance testing was a low-expectation process, i.e. only a few
critical variables were checked, and only 50 random test cases were used.
Consequently the functional and structural test coverage of the products was low.

The reliability of the components based on the acceptance testing was about 0.94.

10
The validation testing using much stricter criteria, a range of tolerances for
comparing real number valuesj test data sets con:;isting of random and extremal and
special value test cases, and providing full functional and linear-block coverage,
detected a number of faults of varying prevalence and seriousness. Some of the
faults were found to be highly correlated. The reliability of the components was
found to be a strong function of the tolerance used for comparisons. Adjudication of
the answer correctness was performed using a "golden" or oracle program developed
at NCSU. Software development and testing was done on VAX 11/750 and 780

hardware running UNIX 4.2BSD, and MicroVAX II hardware running Ultrix 1.2.

in order to study the influence of component reliability and inter~component
failure dependence on the performance of back-to-back testing we have formed
subsets of components. The subsets had different average component failure
probability (p), and different inter-component correlation characteristics.
Components for the subsets were selected on the basis of their behaviour during
different stages of the validation testing. The four subsets which are discussed in this
paper are coded 6(2.1), %(2.1), 9(2.1) and 13(3.1). The first number identifies the
number of versions (m) and the second the problem specification update number to

which the test data and the golden code used for testing conformed.
3.2 Experimental Measurements

The effectiveness of back-to-back testing was investigated using random
test cases. The error detecting power, and the structural and functional coverage
provided by the random sets saturated very rapidly. Measured values (e.g. g'(k))
stabilized by the time about 100 cases were run (not an unexpected resuilt,
(Vou86a,b]), and hence we used only 200 random test cases. [n the back-to-back
event space this, of course, expands to 200*C(m,k) event samples and gives

acceptable 95% conrfidence bounds on the back-to-back testing parameters.

11

To measure the "reliability gain" (or unreliability reduction faetor), G(k),
offered by back-to-back testing process of k components, as opposed to the
development of a single component, we shail use the ratio of the probability of an
"undetected" failure in an average single component to the probability of an

"undetected"” failure in an average k-tuple after back-to-back testing:

G(k) = B/P(k) (11)

Experimentaily, single component "undetected" failures were recorded by
running functionaily equivalent components against a "golden" or oracle program to
estimate component failure probabilities. An average value was then computed for

the pool of availabie (operational) components.

The "undetected" multicomponent failures probabilities were computed from
pairwise comparisons of responses of all components. The resuilts of the comparisons

for each test case were recorded in a (k+1) by k response matrix. The zeroth row of

the response matrix (i=0) contains information on the comparison of the components
with the golden code. The remaining rows cary information about the mutual
comparisons of the components. For exampie, if the comparison of components i and
j detected a difference for a given test case then the entries (i,j) and (j,i) were given
value 1, otherwise the value was zero. Unless stated otherwise, a comparison
involved eleven variables, or 52 individual values if array elements are counted
separately. A difference was signalled if even one of these 52 values differed from
the golden value. The results shown in this paper were obtained with TOL=0.0001
absolute for real numbers, and TOL=0 for integers. The response matrices were used
to compute the usual muitiple component failure profiles [Vou85,86a], intensity

profiles [Eck85], and counts of the back-to-back events (see section 2).

Let a hat,” , denote experimentally obtained estimates. [f p; denotes an
i

12
estimate of the failure probability of component i (relative to the goid program),
then% was computed by substitution of the Bi values into equation (2). Individual
?’j(k)'s were similarly computed by substitution in equation (3), and f’(k) was then
computed using equation (4). The estimate f’c(k) was computed from the ecount of all
level-k FAILURE events. The estimate ﬁl(k) was calculated from the ratio
[(NO_FLAG-count/200*C(m,k)), where the count was over all 200 test cases and over
all the k_out_of_m possible k-tuples. The parameter X was estimated from the ratio
(NO_FLAG-count/FAILURE-count]. The analysis was performed for all three
FAILURE event categories defined in section 2, i.e. ONEPLUS, MAJORITY and ALL.

The results are summarized in Table 1.

To illustrate the relative size of the inter-component correiation among the

sets, and order them by correlation level, we compute a function L(k) defined by:
L(k) = By(k)/P(k) (12)

where L(k) may be regarded as the amplification factor of the worst-case
uncorrelated back-to-back testing failure probability required to achieve the
observed ﬁ;(k) . The value of L(k) is always positive and may be larger than 1. Since
the output space cardinality is the same for ail subsets any differences in the L(k)'s
stem from the inter~component failure dependence and therefore can be used to

estimate its relative magnitude.
3.3 The Gain

The experimental gain estimates (using ONEPLUS FAILURE events) are
shown in Figure 2. Note that the ordinate uses logarithmic scale. The notation used
in the legend of this and other figures has the following meaning. The first two
letters deseribe the function that is being plotted. If the first letter is T then the

curve is the resuit of theoretical computations, if it is E the data was obtained

Table

1.

Experimental Results

i A A PN A A
| k G(k) Py(k) Pc(k) P(k) X(k) . sample
‘ size
¢
. Set: 6(2.1) P = 0.379 using ONEPLUS FAILURE events
L2 2.80 0.136 0.615 0.126 0.221 3000 |
P 3 9.85 0.0385 0.769 0.0351 0.0501 4000 |
L4 51.7 7.33e-3 0.873 7.85e-3 8.40e-3 3000 |
i 5 455.0 8.33e-4 0.947 1.38e-3 8.80e-4 1200 |
' 6 inf 0 1.0 2.01e-4 0 200
' Set: 6(2.1) p = 0.379 using MAJORITY FAILURE events
2 12.5 0.0303 0.144 0.126 0.211 3000
3 24.1 0.0156 0.3086 0.0351 0.0515 4000
4 284.3 1.33e-3 0.156 7.85e-3 8.55e-3 3000
5 inf 0 0.270 1.38e-3 0 1200
K inf 0 0.160 2.02e-4 0 200 |
|
! Set: 6(2.1) P = 0.379 using ALL FAILURE events
2 12.5 0.0303 0.144 0.126 0.211 3000
3 137.8 2.75e-3 0.0625 0.0351 0.0440 4000
4 1137.1 3.33e-4 0.0313 7.85e-3 0.0106 3000
5 inf 0 0.0192 1.38e-3 0 1200
6 inf 0 0.0150 2.02e-4 0 200
- Set: 4(2.1) P = 0.185 using ONEPLUS FAILURE events
2 1.12 0.166 0.302 0.0276 0.550 1200
3 1.66 0.111 0.376 3.31e-3 0.296 800
4 3.08 0.060 0.420 3.44e-4 0.143 200
. Set: 4(2.1) P = 0.185 using MAJORITY FAILURE events i
iy’ 4.19 0.0442 0.0683 0.0276 0.646 1200
-3 3.61 0.0513 0.153 3.31e-3 0.336 800
.4 18.5 0.010 0.060 3.44e-4 0.167 200
Set: 4(2.1) P = 0.185 using ALL FAILURE events i
2 4.19 0.0442 0.0683 0.0276 0.646 1200
3 29.6 6.25¢-3 0.0262 3.31e-3 0.238 800 |
4 inf 0 0.0150 3.44e-4 0 ;

200

Table 1. (continued)

~ A ~ ~ -

k G(k) Pr(k) Pc(k) P(k) X‘(k) sample
size

Set: 9(2.1) P = 0.366 using ONEPLUS FAILURE events |

2 2.11 0.174 0.562 0.126 0.309 7200

3 4.40 0.0832 0.683 0.0406 0.122 16800

4 9.74 0.0376 0.767 0.0122 0.0490 25200

5 23.4 0.0157 0.830 3.41e-3 0.0189 25200 !

6 60.9 6.01e-3 0.882 8.71e-4 6.82e-3 16800

7 175.7 2.08e-3 0.926 2.00e-4 2.25e-3 7200

8 658.6 5.56e-4 0.964 4.05e-5 5.76e-4 1800

9 inf 0 1.000 7.25e-6 0 200

Set: 9(2.1) P = 0.366 using ALL FAILURE events ,

2 6.72 0.054 0.169 0.126 0.322 7200

3 26.6 0.0137 0.0936 0.0406 0.147 16800

4 93.2 3.93e-3 0.0556 0.0122 0.0706 25200

5 279.5 1.31e-3 0.0347 3.41e-3 0.0377 25200

6 768.6 4.76e-4 0.0226 8.71e-4 0.0211 16800

7 2635.2 1.39e-4 0.0155 2.00e-4 8.93e-3 7200

8 inf 0 0.0117 4.05e-5 0 1800 !

9 inf 0 0.0100 7.25e-6 0 200 ;

Set: 13(3.1) P = 0.443 using ONEPLUS FAILURE events

2 2.45 0.181 0.631 0.189 0.286 15600

3 6.53 0.0656 0.731 0.0782 0.0697 57200

1 18.8 0.0232 0.789 0.0311 0.0294 143000

5 56.0 7.76e-3 0.821 0.0119 9.46e-3 257400

6 187.1 2.32e-3 0.839 4.38e-3 2.77e-3 343200 !

7 739.1 5.86e-4 0.848 1.55e-3 6.94e-4 343200 °

8 3732.3 1.17e-4 0.853 5.27e-4 1.37e-4 275400

9 31102 1.40e-5 0.854 1.73e-4 1.64e-5 143000

10 inf 0 0.855 5.46e-5 0 57200

11 inf 0 1.67e-5 0 15600 |

12 inf 0 4.94e-6 0 2600

13 inf 0 1.42e-6 0 200 |

Set: 13(3.1) P = 0.443 using ALL FAILURE events

2 4.82 0.0920 0.254 0.189 0.362 15600

3 22.2 0.0199 0.167 0.0782 0.119 57200

4 86.3 5.13e-3 0.123 0.0311 0.0418 143000

5 304.1 1.46e-3 0.0976 0.0119 0.0149 257400

6 1187.8 3.73e-4 0.0810 4.38e-3 4.61e-3 343200 .

7 6081.5 7.28e-5 0.0686 1.55e-3 1.06e-3 343200

8 57014 7.77e-6 0.0587 5.27e-4 1.32e-4 275400

9 inf 0 0.0501 .73e-4 0 14300

10 inf 0 0.0422 5.46e-3 0 57200

11 inf 0 0.0347 1.67e-5 0 15600

12 inf 0 0.0273 4.94e-6 0 2600

13 inf 0 0

0.0200 1.42e-6 200 J

14
experimentally. The second letter has the following meanings: G = G(k) or gain, L =
L(k), ¢ = X'(k). The number following the first fwo letters denotes the number of
versions invoived in the comparisons (m), and is used to identify the component
subset used. I[f the data are experimental this number may be followed by another
letter. Letter A denotes that ALL FAILURE events were used to derive the plotted
values, letter M that the MAJORITY FAILURE events were used, and if there is no
letter ONEPLUS events were used. For theoretical curves the number of components
is followed, in parentheses, by a roman numeral (I, I or III) identifying the
theoretical model bound used to compute the values. In the case of Model III the

identifier is followed by the span value used i_n computations.

[t is obvious that even in the worst observed case (subset 4(2.1)) the
multiversion development coupled with back-to-back testing offers some gain in
reliability over the single component development approach. The size of the fault
correlation level, as measured by L(k), is illustrated in Figure 3. Experimental g'(k)
estimates are shown in figure 4. The largest inter-component fault-correlation is
exhibited by set 4(2.1) and the smallest by set 6(2.1). From Table | we see that the
most unreliable set is 13 (average failure probability is 0.443), and the most reliable
subset is 4(2.1) with an average failure probability of 0.185. The component sets 6, 13
and 9 reach infinite gain (no "undetected" failures (faults)) for 6, 10 and 9 deveioped
components respectively. Using the conservative ONEPLUS FAILURE events, subset

4(2.1) never detects ail the potential failures.

The siopes of the curves in Figure 2, and the gain they imply vary among the
subsets. The reason for this difference is primarily the inter-component failure
correlation. The influence of the average component failure probability of a set
appears to be far less important than the correlation effect. For example, the sets 6

and 9 are approximately equally reliable but the lower correlation set 6(2.1) offers

15

100000
.
10000 //
3
1000 / ®- £a13
G(k) / // ;—em
» - €G5
100 / / A= 864
D/.
10 ____Eé:/‘
ézf/
T« s s 7 . s

Number of Components (k)

Figure 2. Gain, G(k), vs. Number of Developed components (k). The gain estimate of

the ratio of "undetected" failures in an average single component
failures remaining after back-to-back testing of the components

ONEPLUS FAILURE events.

20

to "undetected"
computed using

1.8

it

Al
\\

12 / &= £.13A

7 \ -

L(k) 108, \ - esA
0.8 4 \ aA- B4
06 A -
04 \:\ \ V/A \
) — \
02 CL\B
\

0.0 - . :_'% a - a——

1 2 3 4 5 6 7 (] °

Number of Components (k)
Figure 3. L(k) vs. Number of components(k). [llustration of the relative inter~

component correlation. The difference between the curves indicates the difference in the

failure (fault) dependence.

10

09

os

0.7 4

08

Qs

04

o |

02

0.1

0.0

N\
—_— a Avm—g

FPigure 4.)

using ALL FAI

2 3 4 5 3 7 8 9
Number of Components (k)

(k) vs. Number of Components. Experimental estimate
LURE events.

L6

®- Ec13A
A= EcoA
O- ecea
A~ Ecen

g(k) computed

better gain figures. Similarly, the most "unreliable" set, 13(2.1), has a correlation

level which appears to be smaliler than that of set 9(2.1), and its gain curve lies above

that for the set 9. On the other hand, set 4(2.1) has relatively high reliability, but its

components are highly correlated resulting in a gain curve far below any of the other

sets.

Figures 5 to 8 show the experimental and theoretical gain curves for each of

the component subsets separately. Filled (black) symbols refer to the experimental

data and unfilled symbols to theoretical computations. Theoretical computations

represent worst-case bounds obtained using Model I (triangles), Model II (squares),

and Model III (diamonds, equation (10) using the maximum fault span observed for

17
conservative gain estimates). I[n the case of set 4(2.1) this last limit would be
constant and equal to one, so diamonds in that case represent computations for the

span of 3 recorded using the ALL FAILURE events.

It shouid be noted that the theoretical models, as defined in section 2, do not
account for the tolerance effect (i.e. a range of FAILURE events from ONEPLUS to
ALL), but only for the ALL FAILURE events. Therefore the theoretical values
obtaired using these models will underestimate the actual fajlure probability as
measured by FAILURE or MAJORITY FAILURE events. Hence, to validate the
models we use the ALL FAILURE event data. Also note that any result checking
during the development/testing of components effectively acts as an additional
version (even manual computations may qualify as a "version"). Therefore, in

practice the minimal number of "developed" components is usually 2.

Figure 5 shows the FAILURE (EG6), MAJORITY FAILURE (EG6M), and ALL
FAILURE (EG6A), estimates of the gain for the six component set. Also shown are
the worst-case gain curves expected using Model [, TG6(I), and Model I, TG6(II), as
well as a Model [II based bound (equation (10) with m=6, s=5, p=0.379), TG6(IIl/5). It
is interesting to observe that for the ALL FAILURE events the maximum fault span
is one less than it is for the ONEPLUS FAILURE events. The conservative
experimental gain curve is well approximated by the Model II worst-case bound,

while the MAJORITY and ALL FAILURE estimates are better then this bound.

Figure 6 shows the gain curves for the subset 9(2.1). Only the ONEPLUS
FAILURE and the ALL FAILURE experimental data are given. The component sets
6(2.1) and 9(2.1) have very similar average component failure probabilities, but they
have significantly different inter-component failure dependence characteristics (see
Figure 3). The effect of the increased inter-component failure correlation in subset

9(2.1) manifests as a reduced slope of the 9 gain curves. The conservative zain

G(k) 100 2 / //

Number of Components (k)

®- G5

4 EGEA

B EGeM

4~ TGE(1)

Q- rGs(in
O° TGE(III/S)

118

Figure S. G(k) vs. Number of Components. Experimental and theoretical gain curves

for set 6(2.1).

100000

a

L

1000 2

T

\

78 =
G(k) _ /‘70//6/./)(

- =

o L

3 4 5 [] 7 8
Number of Components (k)

® £

¥ EGOA

4 TG1)

Q- ras(n)
Q- TGe(IIe)
X- TGR(Ix)

Pigure 6. G(k) vs. Number of Components. Experimental and theoretical gain curves

for set 3(2.1).

100000

FaY/ g
/ / 4 e - s
y - * EG13
1000 / g — A £a1oa
G(k) A / gjaf &~ 1G13()
100 [/;7/,5 L Q- TG
. ,/ﬁ // O- TG130119)

7 o
& __~
Vo
1 o) - * 4
Q 2 4 8 8 10 12

Number of Components (k)

19

Figure 7. G(k) vs. Number of Components. Experimental and theoreticai gain curves

for set 13(3.1).

1000
a
100 ZA P w
/
a 4 EG4A
G(k) A A TG4(N)
Q- TG4
10 ©- TG4(13)
1 ué/t A ”
1.0 1.5 20 25 30 as 40

Number of Components (k)

Figure 8. G(k) vs. Number of Components. Experimental and theoretical gain curves

for set 4(2.1).

20
estimates fall below the Model [predictions based on the average failure probability
of the whole subset. Figures 7 and 8 illustrate the gain information for subsets

13(3.1) and 4(2.1) respectively.

Considering all four sets we note that the Model [worst-case bound provides
a satisfactory lower limit with respect to all ALL FAILURE experimental curves. A
reasonable conservative limit seems to be provided through the Model III bound. Work
in progress at NCSU shows that good estimates of the correlation behaviour and of
the bounds can be obtained without the use of a special golden program. For
example, curve TG9(Ix) was computed using Model | with an estimate of § based only
on the relative performanc'e of the 9 components. Each component was in turn
treated as the gold program and average failure probability of the other components
was computed relative to it. A grand average was then computed over all the

estimates for us in Model [.

4. Conclusions

Using functionally equivalent software components we have experimentally
investigated the effectiveness of back-to-back testing process. We compared the
unreliabilitﬁ offered by a muitiversion development approach with back-to-back
testing, with the average unreliability of a single component. Even conservative
estimates indicate a considerable increase in the probability of detecting failures
(faults) if back-to-back testing is used. Three models of the back-to-back testing
process were presented, and it was shown that they offer good estimates of the lower

bounds on the observed multiversion development reliability gains.

5. References

(Avi84] A. Avizienis and J.P. Kelly, "Fault-Tolerance by Design Diversity: Concepts and
Experiments", Computer, Vol. 17, pp. 67-80, 1984

(Bis86] P.G. Bishop, D.G. Esp, M. Barnes. P Humphreys, G. Dahi, and J. Lahti, "PODS—A
Project on Diverse Software”, [EEE Trans. Soft. Eng., Vol. SE-12(9),
929-940, 1986.

(Eck85] D.E. Eckhardt, Jr. and L.D. Lee, "A Theoretical Basis for the Analysis of
Multiversion Software Subject to Coincident Errors", IEEE Trans. Soft.
Eng., Vol. SE-11(12), 1511-1517, 1985.

(Kel86] J. Kelly, D. Eckhardt, A. Caglayan, J. Knight, D. McAllister, M. Vouk, "Early
Results from the Second Generation Multi-Version Software Experiment",
submitted for publication, 1986.

(Kni86] J.C. Knight and N.G. Leveson, "An Experimental Evaluation of the assumption of
Independence in Multiversion Programming”, IEEE Trans. Soft. Eng., Vol.
SE-12(1), 96-109, 1986.

(Mad84] W.A. Madden, and K.Y. Rone, "Design, Development, Integration: Space Shuttle:
Primary Flight Software System", Comm. of the ACM, Vol. 27(8), 902-913,

: 1984. .

(Mar82] D.J. Martin, "Dissimilar Software in High Integrity Applications in Flight
Controls", Proc. AGARD - CP 330. 36.1-36.13, September 1982.

(Nag82] P.M. Nagel and J.A. Skrivan, "Software Reliability: Repetitive Run
Experimentation and Modeling”, BSC-40366, Boeing, Seattle. Wa., 1982

(Nag84) P.M. Nagel, F.W. Scholz and J.A. Skrivan, "Software Reliability: Additional
Investigation into Modeling with Replicated Experiments”", NASA
CR172378, Boeing, Seattle, Wa., 1984

(Ram82] C.V. Ramamoorthy and F.B. Bastani, "Software reliability - status and
perspectives”, I[EEE Trans. Soft. Eng., Vol. SE-8, 354-371, 1982

(Ran75] B. Randell, "System structure for software fault-tolerance", IEEE Trans. Soft.
Eng., Vol. SE-1, 220-232, 1975

(Sco83,a] R.K. Scott, "Data Domain Modeling of Fault Tolerant Software Reliability",
Ph.D. Dissertation, North Carolina State University, Raleigh, North
Carolina, 1983

(Sco83,b] R.K. Scott, J.W. Gault, D.F. McAllister and J. Wiggs, "Experimental
Validation of Six Fault-Tolerant Software Reliability Models”, Proc. |EEE
14th Fault-Tolerant Computing Symposium, pp. 102-107, 1983

(Sco84] R.K. Scott, J.W. Gault, D.F. McAllister and J. Wiggs, "Investigating Version
Dependence in Fault-Tolerant Software”", AGARD 361, pp. 21.1-21.10, 1984

(Sco86,b] R.K. Scott, J.W. Gault and D.F. McAllister, "Fault-Tolerant Software
Reliability Modeling”, [EEE Trans. Software Eng., 1986, to appear

(Sun85] C. Sun, "Reliability of N-version programming for finite output spaces”, M.Sc.
Thesis, North Carolina State University, Raleigh, North Carolina, 1985

(Tro85] R. Troy and C. Baluteau, "Assessment of Software Quality for the Airbus A310
Automatic Pilot", Proc. FTCS 15, Ann Arbor, USA, (IEEE CS Press),
438-443, June 198S.

(Vous5] M.A. Vouk, D.F. McAllister, K.C. Tai, "ldentification of correlated failures of
fauit-tolerant software systems”, in Proc. COMPSAC 85, 437-444, 198S.

(Vouséa] M.A. Vouk, D.F. McAllister, K.C. Tai, "An Experimental Evaluation of the
Effectiveness of Random Testing of Fauit-tolerant Software”, Proc.
Workshop on Software Testing, Banff, Canada, [EEE CS Press, July 1986.

{Vou86b] M.A. Vouk, M.L. Helsabeck, K.C. Tai. and D.F. McAllister, "On Testing of
Functionally Equivalent Components of Fauit-Tolerant Software", Proc.
COMPSAC 86, 414-419, 1986.

(wWig84] J.E. Wiggs, "Experimental Validation of Fault-Tolerant Software Reliability
Modelis", M.Sc. Thesis, North Carolina State University, Raleigh. North
Carolina, 1984

NASA/NAG-1-667/R/3.0/NCSU.CSC.(DFM,KCT,MAV)/Oct-87

Appendixii V88- 134, 6

NASA/NAG-1-667/R/3.0/NCSU.CSC.(DFM,KCT,MAV)/Oct-87

RSDIMU Acceptance Testing System

Version 3.0

May 1987

-

Sep 11 08:34 1987 ReadMe Page 1
Fault-Tolerant Software Experiment

OVERVIEW OF ACCEPTANCE SOFTWARE AND PROCEDURES
RSDIMU ACCEPTANCE TESTING SYSTEM (RSDIMU-ATS)

RSDIMU-ATS 3.0/PR/UNIX/FTS.NASA-LaRC.Va/NCSU.CSC/05~-Mar-87

This note applies to the releases 3.0 of RSDIMU-ATS. The release

complies with the version 3.2/10-Feb-87 of the RSDIMU specifications.

This system is released for restricted use by sites involved in the NASA-LaRC
fault-tolerant software experiment.

Institutions participating in the program:
NASA-Langley Research Center, CRA, NCSU, UVA, UCLA
(ex-participants: RTI, UIUC).

Re-distribution and use of this system for purposes other than the
ones compatible with the current experiment is prohibited unless
explicit permission is obtained from the NASA-Langley Research Center
coordinator for this experiment (Dr. D.E. Echkardt).

The RSDIMU Acceptance Testing System (RSDIMU-ATS) was built to help
test and analyse multiversion RSDIMU procedures generated as part of a
NASA sponsored fault-tolerant software experiment in progress since
Spring 1985. RSDIMU-ATS is intended for use in

a UNIX environment and may need to be modified if UNIX-like, or
non-VAX systems are used. Part of the software needs to be

recompiled if used on non-VAX hardware (e.g. SUN workstations).

It was tested on VAX 11,780,785, and MicroVAX II hardware

under UNIX 4.2/4.3BSD, and Ultrixl1.1/1.2 respectively.

The system is shipped on a 9-track magnetic tape (standard size) in
tar format at 1600 bpi, as directory tree rooted in ./fts87.

fts87

| ! | | |

ReadMe accept code data generators* gold nonVAX host** certify testcases*

* shipped on request only
** to VAX sites shipped on request only

The following notes discuss more important features of the system.
1. ReadMe is the file containing this note.
RSDIMU-ATS 3.0/PR/UNIX/FTS.NASA-LaRC.Va/NCSU.CSC/05-Mar-87
2. The core of the acceptance testing system is located in the directory
"accept". It is intended to help an experimenter run, evaluate and request
corrections of programs in a semiautomatic fashion. A more detailed

description of the accept system is found in ReadMe notes in
the accept/ and certify/ directories. The system is based on the use

Sep 11 08:34 1987 ReadMe Page 2

of a "golden" program for adjudication of the correctness of the answers
generated by the code being tested. The RSDIMU code is tested one

component (version) at the time against a pre-recorded output expected from
the "golden" code. Any differences from the expected answers have to be
examined in detail, and corrections justified in error correction

reports. Our confidence in the correctness of the "golden" code is

very high, however experimenters should still be on the look-out

for discrepancies indicating possible "golden" code errors. If such are
discovered all on-site testing should be frozen, and the RSDIMU-ATS
distribution site (NCSU) notified immediately. Similarly, if errors are
discovered in the ATS harness scripts please notify NCSU. A detailed
description of the acceptance procedure is located in accept/ ReadMe notes.
The basic idea is to follow an iterative correction process, i.e
test-correct (one or more errors at the time)-test etc. All communication
with programmers should follow guidelines given in certify/ReadMe notes.
Testing involves location of the fault(s) causing the first 20 failures

and its (their) removal. This repeats until no errors

are detected by the supplied acceptance test set.

The same test data set is used on all programs at all sites.

An extended analysis system providing MCF profile (intensity)
analysis is available on request, but it should not be used to perform
acceptance testing as part of the current experiment (see note 4).

All the testcases in this release of the system comply with the
specification version 3.2/10-Feb-87. A test case entry consists of an
input record, and an output record. The latter contains what is believed
to be the correct answer to the input record according to the 3.2 specs,
and as generated/given by gold3v2.i.

A set of test cases was designed and generated for acceptance testing
rsdimu code. It consists of a group of 796 extremal/special value (ESV)
test cases and a group of 400 random test cases. All test cases are located
in the directory data/.

A successful pass through all the test cases gives an estimated lower
limit on the reliability of the rsdimu code of about 0.992 (valid for

the employed sampling profiles).

More details about the test cases can be found in the ReadMe notes in the
data/ directory.

Directory "generators" contains files and code one may need to generate
the ESV and random data from scratch. It is not expected that a

user working in a VAX-UNIX environment would have to do that (however,
see notes in the nonVAX host directory). In fact, it is not recommended
that sites generate (or re-generate) data without consultation since
rounding and other subtle differences might appear between the newly
generated cases and the ones on this distribution tape, resulting

in the use of somewhat different cases by different sites.

Directory testcases/ contains raw esv test cases (text form).

Directory "code" is assumed to contain the rsdimu code that is being
tested. If you do not wish to keep your code in that directory either use

Sep 11 08:34 1987 ReadMe Page 3

pointers/links to the code, or change the appropriate portions of the
acceptance system.

Note that RSDIMU-ATS is sensitive to the overall file structure that is
used in the system, and any changes should be made only after consultation
with NCSU.

It is extremely important for the success of the experiment that you
keep not only the final, corrected version of each program, but that
each intermediate version submitted for acceptance testing is saved
and tagged with an appropriate version number and information about
the changes/corrections (using the provided change form, in certify).

It is important that you promptly review all the returned error-reports.
In this experiment we are not implementing

back-to-back version testing and a formal automatic correlation
search-and-remove loop (we have the tools, but since this was not

part of the original experimental design we do not want to change the
rules now). However, all the discrepancies between individually
submitted and tested components and the "golden" answers should be
scrutinized with extreme care in case the difference is due to the
"golden" code, rather than your own code (a posible cause could be use
of RSDIMU-ATS in an environment not 100% compatible with the ones

in which the system was tested, see notes in nonVAX host/ directory).

5. The "certify" directory contains code and files that are sent to each
maintenance/certification team. It contains a basic rsdimu driver
(to avoid interface problems) and instructions on its use. It also
contains a sample input and output, and an electronic error report file.

AhkdkhhhkhkdhkhkhkhkhhkkhkRkhkkkhkhkhkhdkhkhhhhkhkhhhdhdhkhkdddddhkkkdodhdhkdddkdiddhhkkkkkhkkr

Local site experimenters have to change/adjust the

certify ReadMe and ReadMe to certify notes to reflect local
electronic mail address, and local version management
environment and approach (RCS, SCCS, or similar).

You should also make all "fts_* files in certify ‘read only’
to prevent accidental changes in the team’s testing

environment (prevent changes by making yourself the owner.

*
*
*
%
*
*
*
*
LR RS SRR RS RS RS EE R E R R RS S XSS SRR RS R RS RR R RRRER R X

*
*
*
*
*
*
*
*
*

Whenever a change is made in the code it is expected that the programmer(s)
will record it using this report. A new version of the code, and error
and change report(s), have to be returned to the experimenters together.

It is essential that each program be given a version number and
associated with it the date of it creation. Every time a program is
corrected its version changes and should be recorded in the correction
report, as comments in the code itself, and should reflect in the file
name for the new code (as kept in the "code" directory, and in the
"newcode" directory in accept/).

All versions of the code, i.e. all submitted corrected code, should be
preserved for future analysis. Examples are given in the "certify" directory
and in the "accept" (detailed procedure). Use magnetic tapes.

Sep 11 08:34 1987 ReadMe Page 4

Ig (disk or tape) space is a problem, we suggest that you store only the
difference between the original version and successive corrections
using for example Unix diff processor.

FOR ANY INFORMATION REGARDING THIS SYSTEM PLEASE CONTACT:

M.A. Vouk

North Carolina State University
Department of Computer Science, Box 8206
Raleigh, NC 27695-8206

Tel: 919-737-7886 (office)
919-737-2858 (departmental office)

USENET: mcnc!ece-cscl!vouk
ARPA: vouk@ece-csc.ncsu.edu

Sep 11 08:39 1987 accept.ReadMe Page 1

Fault-Tolerant Software Experiment
ACCEPTANCE ENVIRONMENT

RSDIMU-ATS 3.0/PR/UNIX/FTS.NASA-LaRC.Va/NCSU.CSC/05-Mar-87

This is the basic acceptance environment. Most of the shell scripts and
programs have either a help which describes its activation parameters
(invoke the script without any parameters), or internal documentation.
Where needed program source code is provided.

Current version of the system is intended for UNIX csh environment under
either 4.2/4.3BSD, or Ultrix 1.1/1.2, running on VAX hardware.

Comparison of the values computed by programs with those using golden
code is done using relative tolerance. It is possible to switch to
absolute tolerances if that is desired. Do not do that for acceptance
testing.

Testing tolerances are set to the following values within fts accept
and can be changed by modifying statements within fts accept (see
fts_accept help):

DiffBestEst = 0.00024414
DiffLinOut = 0.00024414
DiffOffset = 0.00024414
tolerance _mode = relative

Please do not use different tolerances for your acceptance testing
before getting concurrence from all the other testing sites. Otherwise we
shall each end up testing and correcting different things.

There is no tolerance regarding the display values (five digits),

but one could allow for a difference in the last displayed digit.

To avoid display related warnings and "failures" of the type:

gold 4.9999 vs. computed 5.0000, and to therefore test only the

display algorithm, we inject (using voteestimates) golden values

for bestest and other real-valued variables prior to display computations.

The acceptance harness tests for agreement on eleven output variables
(infact 59, if elements of arrays are counted separately, number of elements
is given in parentheses). They are:

LINOFFSET, LINNOISE, LINOUT, LINFAILOUT, SYSSTATUS, BESTEST, CHANEST,
CHANFACE, DISMODE, DISUPPER and DISLOWER.

Critical variables are: (3)BESTEST, (8)LINFAILOUT, ((1)SYSSTATUS)
Non-critical: (1)DISMODE, (3)DISUPPER, {(3)DISLOWER, {(12)CHANEST, (4)CHANFACE
Intermediate: (SYSSTATUS), (8)LINOFFSET, (8)LINNOISE, (8)LINOUT

All variables are checked for each test case.

For more details on the checking of variables and tolerance used see

Sep 11 08:39 1987 accept.ReadMe Page 2

the listings of the fts_harness files, and the April 86 NCSU Working
Notes from the Langley meeting (NASA.FTS/NCSU/WN/1/Apr-86), and
UCLA notes from the same meeting.

To avoid accidental correctness problems output variables are "trashed"
before each test case is run.

The trash values injected in the various output variables of rsdimu are
as follows

LINOFFSET : -9999.0
LINOUT : 999999.0

BESTEST.ACCELERATION [1..3] : 9999999.0;
CHANEST [1..4).ACCELERATION [1..3] : 9999999.0;

DISMODE : 65534
DISUPPER [1..3] : 65534
DISLOWER [1..3] : 65534

The values for real variables (first four listed above)

cannot occur for the current set of input data, and are highly unlikely
otherwise. The display values are supposed to turn on only the G segment for
the least significant digit. Boolean output variables, and user defined

are initilized by the compiler (to zero).

Primary scripts:

fts_certify - shell script which activates fts accept with all.dat

test data and produces a correction request report

and test cases for the cerification team by

running fts correq. Certain program naming conventions
and running options are built-in.

} fts _accept - shell script for constructing, compiling and running

harness+rsdimu code.

fts correq - correction request generation shell script, generates
a report/request suitable for mailing to the
maintenance teams.

Utility scripts and programs:

fts_listdata script for listing test cases from the test data files.

fts _prnt - data listing program.

fts prterr - program produces test cases suitable for use by
fts driver.p code.

fts terl - block coverage computation script.

‘fts_lc - lower-case filter.

.

Sep 11 08:39 1987 accept.ReadMe Page 3

fts uc - upper-case filter.

fts _nc - comment-delimiters lex-based filter.

Source code and script parts:

fts_io - sed control code to flag "integer","real",and rsdimu i/o.
fts_dbxbug - dbx bug control code.
fts dbxinit - dbx initialization code.

fts_harness.declare - test harness declarations.

fts harness.rest - test harness body.

fts msgtext - correction request message.
fts prnt.p - source code for fts prnt.
fts prterr.p - source code for fts_prterr

Documentation and examples:

ReadMe - general information about the "accept" directory.
ReadMe to certify - certification procedure using fts_certify

ReadMe accept - using fts accept.

example/ - directory with example outputs from an fts_accept run
(ncsuD7.1 tested by executing:

fts_accept ncsuD7.i ncd7 all -c -x > test.ncd7alls
fts correq ncd7 all > correq.ncd?
).

newcode/ - empty directory for testing results (reminder),

Data links:

all.dat - symbolic link to esv+random acceptance test cases.
esv.dat - link to extremal and special value (esv) test cases.
randNCSU.dat - link to independent random test cases (uniform profile).
randCRA.dat -~ link to independent random test cases (shaped profile).

All .dat files are in ../data. '
It is also assumed that the code to be tested is in ../code.

Sep 11 08:39 1987 accept.ReadMe Page 4

The fts lc, fts uc, fts nc, and initial fts_io filters were written by RTI.

The filter fts io (integer/real, and i/o) is rather crude.

It will miss 'real’ at the begining of a line.

It may also cause false warnings regarding use of integer and real types,
and of i/o in the rsdimu code. In those cases hand editing and
recompilation of <work name>.p (rsdimu+harness) files may be

necessary. If editing, search for two question marks 22.

I1f recompiling use: pc -s -C -g -z options. Re-run fts_accept without
the -c option. -

Note that -s compiler option yields messages regarding non-standard
use of Pascal in the code (primarily the harness code). These
messages should be ignored.

Alternatively, delete the first two lines (real/integer),
or third and fourth lines (i/o) of the fts io code.

fts nc filter for comments may cause problems by making nested
comments of type {(* comment *)} transform to {{ comment }}

which is illegal. This filter can be excluded from the processing
pipe in fts_accept.

Sep 11 08:39 1987 accept.ReadMe accept Page 1
Fault-Tolerant Software Experiment

PROCEDURE FOR ACCEPTANCE TESTING

RSDIMU~-ATS 3.0/PR/UNIX/FTS.NASA-LaRC.Va/NCSU.CSC/05-Mar-87

hhkdkdhhkhkhkhkhhkdkhhkhhhhkhkhkhkkhkhkhkhkhhhkhkhhhhdkdhhhhhkhkhkhhhhhkhkhkhkkhkAkAAAAAAAA A Ak Ak h k%

* *
* For the purpose of conducting the acceptance testing (certification *
* of the 20 programs) it is recommended that you use fts certify. *
* Unless you intend to use fts accept directly, rather than through *
* the fts _certify facility, you do not need to read this file. *
* %*
* *

AR SRR R R R RS R R R R R R R R R R R R RS R R RS EE R RS EE R EE

% % % % Kk k &

It is assumed that the communication between the experimenters and the
maintenance personnel will be via electronic mail. It is further

assumed that the experimenter has full access to maintenance personnel
files, but the reverse is not true. It is also assumed that the acceptance
testing is performed in csh in UNIX 4.2/4.3BSD, or Ultrix 1.1/1.2
environments running on VAX hardware (else see nonVAX_host/ directory).

I.

The testing begins by placing the code which is to be tested into the code/
directory. Enter the accept/ directory and start

the initial round of testing by executing the fts accept shell script.

It is recommended that you use the -x option and benefit from the

coverage information thus provided. For example:

fts_accept ncsuB2.i ncb2 all -c -x > test.ncb2alls

NOTE: YOU CANNOT RUN TWO fts accept JOBS FROM THE SAME DIRECTORY AT THE
SAME TIME (IN BACKGROUND). THE SYSTEM WAS NOT DESIGNED FOR THAT

AND YOU CAN END UP WITH A MESS. YOU CAN, HOWEVER, KEEP TWO

DIRECTORIES, SAY ACCEPT1 AND ACCEPTZ2 AND RUN AN fts_accept FROM

EACH OF THEM WITHOUT INTERFERENCE.
The run should either result in error messages (exit code <= 8) or should
complete successfully (exit code 11). When the background job ends check the
test.<name>all file carefully.
* No compiler errors or missing voter call problems (exit status > 5).
* Fatal execution time errors exit status = 7.
* Differences detected from expected output exit status =8.

II.

If the test run ends with any status but exit(ll), i.e. complete success,
produce an error correction request for the maintenance team

Sep 11 08:39 1987 accept.ReadMe_accept Page 2

by running fts correq script. For example:
fts_correq ncb2 all > correq.ncb2

Make sure that the number of failures you wish to analyse is set to 1.
For this see fts correq code (run fts correq without parameters).

File errdata.ncb2 will contain input data for failed cases in a form
that is suitable for use by the "fts driver.p" code in certify/.

Check the content of correq.ncb2 and mail it to the maintenance team
working on the <name> code (in examples: ncsuB2.i and higher versions,
i.e. <name>=ncb2, or ncb3 etc).

You may also have situations where you need to send non-standard messages
as part of the correction request. For example, people may send you

code and reports with incorrect or inappropriate version numbers.

In situations like that create and insert the message at the begining

of the correq.<name> file, just after the standard initial paragraph.

III.

Now create a subdirectory that will hold the starting, and all subsequent
versions for a particular program(mming team). For example:

mkdir newcode/ncsuB

make a sub-subdirectory for the current program version:
mkdir newcode/ncsuB/v2

and move all the files you want to keep into that sub-sub directory, e.g.
mv *ncb2* newcode/ncsuB/v2

You may wish to use diff and compress processors to reduce stored
file sizes.

Unless you are interested in doing further correlation analysis and
extracting intensity functions and experimental MCF profiles (for the
purpose of detecting and eliminating inter-version dependence during

the acceptance testing, not assumed a standard procedure in this

experiment) you may not wish to keep trace.<name>all, vect.<name>all and
binrep.<name>all files. The terl.<name>all file contains a compressed
overview of the executed code blocks (all begining with 0.---| have not been
executed and you should find out why). You will not generate the

trace, vect and terl files, nor keep binrep if you do not use the -x option.
You may also wish to dispense with <name> and <name>.p files which are

the executable harness+rsdimu and source harness+rsdimu respectively.

We would recommend that you save at least the test.<name>all and

the error.<name>all files.

Any communication (questions and answers) received prior to corrected
program version are also saved into the "active" newcode sub-sub directory
as "qlll’ llalll' nqzn' "aZ" etc.

Iv.

Sep 11 08:39 1987 accept.ReadMe accept Page 3

Upon receiving a message with the location of the latest corrected
version, and of the correction/change report(s), cd to accept/:

* Create a new subsubdirectory in the appropriate program subdirectory
e.g. ncsuB3.i location and change report have just been received

mkdir newcode/ncsuB/v3

* Save the location/change report message into v<number>, e.g.
from inside the mail:

s <#> newcode/ncsuB/v3/correction_report
where <#> is the number of the mail message on your h-list.
* Then (<path> points to maintenance team location the code):
cp <path>/ncsuB3.i newcode/ncsuB/v3/ncsuB3.i
cp <path>/ncsuB3.i ../code/ncsuB3.i
fts_accept ncsuB3.i ncb3 all -c -x > test.ncb3alls

Now repeat the previous steps depending on the results of the test run, i.e.
run a fts correq if necessary, move results of the run into, for example v3
etc. Use appropriate university name and version numbers.

khkkhkhkkhkdhhkhhhhkhkhhhkhkhkhhkhhhkhhhhkhkhkhkrhhkhkhhkhrhdbhhhhhdhhhkhhdhhkhkhhrkhkhkhkhkhkhkhkhhkhkhkhkkhkhkkhk

Notes:
vk de gk Kk Kk sk Kk K dk sk K K sk ok Kk sk ok ks ok ke gk sk ok kK K sk ok sk Kk Kk Kk ok ok ok sk ok sk sk ke ok ok K T sk ok ok ok ok sk ok ok ok ok ok ok e ke ke sk sk b ke ok kb ok ke ok ok ok ok ok

It is expected that the maintenance team makes a single error correction
that was requested by the correg.<name> report and sends back to you

a mail message giving the location in their directories of the new

and corrected code version, the new version number and one (or more

if several changes had to be made to correct an error) error correction
report(s). Save the received location message and the correction report into
the "active" newcode sub-sub directory as "correction report", e.g.

newcode/ncsuB/vZ/correction_report

You procede then to pick-up the new version of the code and copy

it into appropriate newcode sub-sub file, and ../code file (you may wish
to use pointers/links to save space instead). Check that they send you
the code and the report with an appropriate version numbers everytime.

DOXDDDID5ODO5 5555555555355 5505555550555 35 5 5 5553 5555035355555 353355550055 05555>

> >
> Check the error report they send against the test report you have!!! >
> If there is any indication at all that the difference may be due >
> to an error in the "golden" code (i.e. supplied expected answers) >
> freeze all testing and immediately inform ATS distribution site, >
> i.e. NCSU (see fts86/ReadMe for address, phone etc.). >
> >
> >

DO5550005000355055 5355550553355 K550 3030033353353 OSDDDOBLODDGOODLOORDO55D

Sep 11 08:39 1987 accept.ReadMe accept Page 4

It is extremely important for the success of the experiment that you
keep not only the final, corrected version of each program, but that
each intemediate version submitted for acceptance testing is saved

and tagged with an appropriate version number and information about
the changes/corrections (using the provided change form). It is
expected that programmers will correct one error at a time (and should
not be given requests for more than one correction at a time), so

that we can keep track of the influence particular errors had on

the overall system failure probability etc.

The "certify" directory contains code and files that would be sent to each
maintenance/certification team. It contains a basic rsdimu driver

(to avoid interface problems) and instructions on its use. It also
contains a sample input and output, and an electronic error report file.
Whenever a change is made in the code it is expected that the programmer
will record using this report. The new version of the code and the error
and change report copy are both returned to the experimenters.

It is essential that each program be given a version number and
associated with it the date of it creation. Every time a program is
corrected its version changes and should be recorded in the correction
report, as comments in the code itself, and should reflect in the file
name for the new code (as kept in the "code" directory, and in the
"newcode" directory in accept/).

de gk K dede gk ok ok sk de ke ke sk e ek ok e Kk ok ke ke sk sk e gk Sk Kk ke ke Ak sk Kk gk ke ki kR ke sk ek ke A ok ke Kk gk vk ke ke sk ke ok Kk sk ke ke Kk ok ok e ke ke ok ok ok ok

Sep 11 08:39 1987 accept.ReadMe_ to_certify Page 1
Fault-Tolerant Software Experiment

PROCEDURE FOR CERTIFICATION TESTING

RSDIMU-ATS 3.0/PR/UNIX/FTS.NASA-LaRC.Va/NCSU.CSC/05-Mar-87

It is assumed that the communication between the experimenters and the
maintenance personnel will be via electronic mail. It is further

assumed that the experimenter has full access to maintenance personnel
files, but the reverse is not true. It is also assumed that the acceptance
testing is performed in csh in UNIX 4.2/4.3BSD, or Ultrix 1.1/1.2
environments running on VAX hardware (else see nonVAX host/ directory).

I.

The testing begins by placing the code which is to be tested into the code/
directory. Enter the accept/ directory and start

the initial round of testing by executing the fts certify shell script.

For example: h

fts certify ncsuD7.i ncd7
or
fts_certify ncsuD7.i ncd7 > certify.ncd7s&

The latter form should be used if you wish to run in the background.

NOTE: YOU CANNOT RUN TWO fts certify JOBS FROM THE SAME DIRECTORY AT THE
SAME TIME (EVEN IN BACKGROUND). THE SYSTEM WAS NOT DESIGNED FOR THAT
AND YOU CAN END UP WITH A MESS. YOU CAN, HOWEVER, KEEP TWO
DIRECTORIES, SAY ACCEPT1 AND ACCEPT2 AND RUN AN fts certify FROM
EACH OF THEM WITHOUT INTERFERENCE.

fts certify calls fts accept with all.dat testset and -c option. Output
is automatically routed into file test.<name>all. This file will then
contain information about the acceptance test run, and will be used

as the basis for forming a correction request file correq.<name>.

The run should either result in error messages (exit code <= 8) or should
complete successfully (exit code 11). When the job ends check the
test.<name>all file carefully.

* No compiler errors or missing voter call problems (exit status > 5).

* Fatal execution time errors exit status = 7.

* Differences detected from expected output exit status =8.

II.

If the test run ends with any status but exit(1l), i.e. complete success,
an error correction request will be produced for the maintenance team.
The correction request will be in correq.<name>, and the test cases

Sep 11 08:39 1987 accept.ReadMe_to_certify Page 2

that caused up to the first 20 failures will be in errdata.<name)>.

Check the content of correqg.<name> and mail it to the maintenance team
working on the <name> code (in examples: ncsuD7.i and higher versions,
i.e. <named>=ncd7, or ncd8 etc).

Mail or copy directly into the directory of the maintenace team file
errdata.<name>. The format of the data in this file is suitable for

direct use by their "driver" program, so that they can do their own

testing.

L2 E R SRR S EEREEESERERERERER SRR RS E SRS SRR XSRS R R SRR RS EEEEEEREEEESS]

WARNTING

* *
* *
* *
* Your system may have a byte limit on mail messages that can be passed *
* through it (e.g. 100,000 bytes). In that case you may find that *
* your correction report may be too large, and may become truncated *
* by the e-mail system. It is safer to send only short messages and *
* to transfer long files directly into certification team’s directory *
* using cp. *
* %*
* *
* *
* *
* *

e.g. 20 failures in ncsuD7.i generate a correqg.ncd7 request file of
about 4000 lines of code (about 170,000 bytes).

 Je d de d ke deod dkod ok Ak Kok Kk vk ok sk gk Kk ok ok ok A ke % ok g ok ok Kk ok ok de ok ek sk ek Kk ok kR sk ke sk ks ok e ok e ok e ok ke ke ke ok ke ke e ok ke ok ke ke ok ke ke

You may also have situations where you need to send non-standard messages
as part of the correction request. For example, people may send you

code and reports with incorrect or inappropriate version numbers.

In situations like that create and insert the message at the begining

of the correq.<name> file, just after the standard initial paragraph.

III.
The following procedure describes program and data version management
without RCS or SCCS. You should read it regardless of the management
procedure you will use so that you can decide what to save/store.

Create a subdirectory that will hold the starting, and all subsequent
versions for a particular program(mming team). For example:

mkdir newcode/ncsuD

make a sub-subdirectory for the current program version:
mkdir newcode/ncsubD/v7

and move all the files you want to keep into that sub-sub directory, e.g.
mv *ncd7* newcode/ncsuD/v7

Unless you are interested in doing correlation analysis and

extracting intensity functions and experimental MCF profiles (for the

purpose of detecting and eliminating inter-version dependence during
the acceptance testing, not assumed a standard procedure in this

Sep 11 08:39 1987 accept.ReadMe to certify Page 3

experiment) you may not wish to keep trace.<name>all, vect.<name>all and
binrep.<name>all files. The terl.<name>all file contains a compressed
overview of the executed code blocks (all begining with 0.---| have not been
executed and you should find out why). You will not generate the

trace, vect and terl files, nor keep binrep if you do not use the -x opFion.
When using fts certify this is default in or der to reduce program testing
time and sve storage.

You may also wish to dispense with <name> and <name>.p files which are
the executable harness+rsdimu and source harness+rsdimu respectively.
We would recommend that you save at least the test.<name>all and

the error.<name>all files.

To save space you can save only the difference in the code between the
starting version and the new version (e.g. ncsuD7.i and ncsuD8.i, or
ncsuD7.i and ncsuD9.i). For that purpose use the diff processor

(read DIFF(1l) manual).

You can further reduce storage space by "compressing"” all the saved files
using compress, or any other code compression processor available on
your machine.

Whatever the scheme, make sure that you can rebuild the starting files
and versions.

Any communication (questions and answers) received prior to correcped
program version are also saved into the "active" newcode sub-sub directory
as llql"’ "a]-"[llqzn’ "azﬂ etC-

Iv.

Upon receiving a message with the location of the latest corrected
version, and of the correction/change report(s), cd to accept/:

* Create a new subsubdirectory in the appropriate.program subdi;ectory
e.g. ncsuD8.i location and change report have just been received

mkdir newcode/ncsuD/v8

* Save the location/change report message into v<number>, e.g.
from inside the mail:

s <#> newcode/ncsuD/v8/correction_report
where <#> is the number of the mail message on your h-list.
* Then (<path> points to maintenance team location the code):
cp <path>/ncsuD8.i newcode/ncsuD/v8/ncsuD8.1
cp <path>/ncsub8.i ../code/ncsuD8.1
alternative for latter (saves space):

{
cd ../code

Sep 11 08:39 1987 accept.ReadMe_to_certify Page 4
ln -s ../accept/newcode/ncsuD/v8/ncsubD8.i ncsuD8.i

fts_certify ncsuD8.i ncd8 > certify.ncd8s&

Now repeat the previous steps depending on the results of the test run.
Use appropriate university name and version numbers.

khkhkkhhkkhkhhkhhhkdhhhkhhdhhhhkhkhhhrhkhhkdhhkhkhhhrhkhhkrbrhkrhdkkhhhhkkkhhkkdkdhhkhkdhkhkkdkkkkkkkkkk

Notes:
Kk hhA AR AR AAAARA AR ARk ko kkkkkkhkkhhhhkhhkkkhkhhhhhhkhkdhkdhdhhkokhdhkkddhdkkdkkkkk

It is expected that the maintenance team makes a error corrections for

up to the first 20 reported failures that were requested by the correq.<name>.
Certification (maintenance) team is supposed to mail back a

message giving the location in their directories of the new

and corrected code version, the new version number and one (or more

if several changes had to be made) error correction report(s).

You may if you wish use hardcopy correction reports, but there is a

danger that the reports may evenuatly get separated from the code and
corrections to which they refer. Furthermore if kept in electronic form

it may be easier to analyse them.

Save the received location message and the correction report(s) into
the "active" newcode sub-sub directory as "correction report", e.g.

newcode/ncsubD/v8/correction report

You procede then to pick-up the new version of the code and copy

it into appropriate newcode sub-sub file, and ../code file (you may wish
to use pointers/links to save space instead). Check that teams send you
the code and the report with an appropriate version numbers everytime.

PODODO0D500305050 50 550003555 X5 5555 5 5 55 5 555555 5303503055553 OO 3505535355555 >

> >
> Check the error report tems send against the test report you have!!! >
> If there is any indication at all that the difference may be due >
> to an error in the "golden" code (i.e. supplied expected answers) >
> freeze all testing and immediately inform ATS distribution site, >
> i.e. NCSU (see fts87/ReadMe for address, phone etc.). >
> >
> >

DO2D00030500500550555550555 55055555555 50555 5555505550550 3530555555555 555>

It is extremely important for the success of the experiment that you
keep not only the final, corrected version of each program, but that
each intemediate version submitted for acceptance testing is saved
and tagged with an appropriate version number and information about
the changes/corrections (using the provided change form).

The "certify" directory contains code and files that would be sent to each
maintenance/certification team. It contains a basic rsdimu driver

(to avoid interface problems) and instructions on its use. It also

contains a sample input and output, and an electronic error report file.
Whenever a change is made in the code it is expected that the programmer
will record it using this report. The new version of the code and the error

Sep 11 08:39 1987 accept.ReadMe to certify Page 5

and change report copy(ies) are returned to the experimenters.

It is essential that each program be given a version number and
associated with it the date of its creation. Every time a program is
corrected its version changes and should be recorded in the correction
report, as comments in the code itself, and should reflect in the file
name for the new code (as kept in the "code" directory, and in the
"newcode" directory in accept/).

hdehddhddhhhkdhhhkhkhhhhkhkdhhkhkhkhkhhkhkhkhhhhhhkkhhhkhkhhhrhhhhhhkhkrhhkhkhrhkhkhrhkkhhhkdhkdhhhhkhx

Sep 11 08:39 1987 certify.ReadMe Page 1

Fault-Tolerant Software Experiment

Instructions for Certification Teams

RSDIMU-ATS 3.0/PR/UNIX/FTS.NASA-LaRC.Va/NCSU.CSC/12-May-87

Welcome to the FTS certification project. This is a NASA sponsored experiment
in Fault-Tolerant Software. Your part will be to find and correct any bugs in
the software, under controlled conditions. The software means one of the twenty
programs that were produced during the first phase of this experiment.

You should be in possession of the following documentation (if you are not
please see your experiment supervisor).

RSDIMU specification (version 3.2/10-Feb-87)

RSDIMU specification (version 2.1/19-Sep-85)

You should also have a directory called "certify" sent to you by the
FTS experimenters. In this directory you have the code for

the driver, instructions for its use, and some test data.

All file that are part of this testing package begin with 'fts_’ and
should not be modifed by you except under special circumstances, and
after consultation with your experiment supervisor. You can

of course copy them and then modify them at will. This is not advised.

You will be receiving messages about needed corrections via e-mail. You
should read them, correct the program to the best of your abilities,
and test it. The data on which the program failed will either be attached
to the message or will be sent to you separately. You can then use this

- data to test your code.

The message with correction requests is expected to be of the form

correq.<name>
iwhere <name> is the code for the program you are correcting (university
' code followed by the team code and program version number). The data
for the cases you failed (suitable for use with your system are
expected to in a file of the form

errdata.<name>all

Once you are satisfied that you have found the fault that is causing

the error(s) you were requested to correct, you should fill out

(make a copy) the error report and send it to your supervisor’s e-mail address.
Your site may also require you to fill in and submit a hard copy of the report.
In the same message you should also tell us what is the current version

9f your program and in which file one can find it (we shall need copies

of your corrected programs so do not change them once you have sent a

»

Sep 11 08:39 1987 certify.ReadMe Page 2

message that one is ready for pick-up).

The program which you have just

finished correcting must be in a file called <unam>XX.vYY,

where <unam> is the agreed upon abbreviation for the university at which the
code was originally produced (e.g. ncsu, ucla, uiuc, uva), XX

stands for the letter and number associated with your program code,

and YY is the current version of your code (you begin by incrementing the number
in XX by one). For example C6, i.e. ncsuC6.v07 means that you have updated
ncsuCé to version 7). You should also learn to update the version number

in the program header in the style in which it is already there.

If it is not part of the code you should add a comment header with the
version number and date (e.g. ncsuC6.v07/15-Jul-86). A sample header is
shown in fts_driver.p code.

If in doubt please ask about details.

Please bear in mind that the original specifications have been changed

and that the latest version (the one you have) may require you not only

to correct existing code, but also to add to it (for example missing calls to
voter routines).

File ReadMe_data contains a description of the test cases that are being
used to test your code. You should use this list in conjunction with
the correq.<name> report to locate and identify errors.

Please read the documentation you have received for the experiment.
Note that you should keep all communications concerning the
program you have been given between yourself and the experimenter,
and should communicate through electronic mail

hhkkdkkhkhkhkhhhkkhhkhhhkhkhhhkhkhkhhkkhdkdkdkddhkkdkkhkdkkdhkkkkkkkkkkkkkkkkkk ok ok ok ok 5k & & %k %k ¥ o & ok % %

e-mail address is: fts

%ok deodk ko ke ok ke gk sk gk g sk ok ke sk ke ok ke k ke ko k ok sk kR ko ke ke ke ks ke sk sk ok ok sk ok sk Kk sk ok ok ke kK ke ke ke kK ok Kk bk ok ok ke ok ke ke ok ok

Please feel free to ask e-mail questions about any part of this experiment.
Note the following rules and guidelines:
1. Do not change protections on any work-related files.

2. Communications are restricted during this experiment as follows.
You may not discuss any aspects of your work in this
job with other programmers. Any work-related communication
between you and the Professor is to be conducted via UNIX mail. We
require this so in the event of an error or ambiguity in the
specifications, or some other significant event, all students
may be sent a copy of the mailed question and its answer.

3. Every day you work you must log onto your UNIX account. In this way you will
receive in a timely manner all mail concerning answers to
questions, any updates in the specifications etc.
You should also fill in a time-sheet once a day.

Sep 11 08:39 1987 certify.ReadMe Page 3

4. Your Professor will read the UNIX mail once early in the morning and again
in the late evening (Monday through Friday). All questions should be
directed to him/her.

5. It is your responsibility to read about UNIX tools you are not familiar
or comfortable with.

6. Once a week, on Friday, you should submit a weekly progress report,
describing the work you did during the week (number and type of
errors you have corrected, any problems you have encountered running
the driver harness, hardware problems, the total time you have spent
working on the project during the week, whether reading or
using the computer, if reading you should specify what and which
part of the specs or which error prompted you to that action, etc.).
Report is to be submitted via e-mail.

Good luck

-

Sep 11 08:39 1987 certify.ReadMe data Page 1

Fault-Tolerant Software Experiment

Data

RSDIMU-ATS 3.0/PR/UNIX/FTS.NASA-LaRC.Va/NCSU.CSC/05-Mar-87

All the testcases in this release of the system comply with the
specification version 3.2/10-Feb-87. A test case entry consists of an
input record, and an output record. The latter contains what is believed
to be the correct answer to the input record according to the 3.2 specs,
and as generated/given by gold3v2.i.

Your code will be tested with a set of extremal and special value (ESV)
test cases (796 of them) followed by 400 random test cases.

The ESV test cases are based on an initial random case which was
then modified step by step to check a particular function and/or
option. In the following overview of the ESV data only the principal
features of the data sub-classes are given, along with the

principal variables that were changed at any one time. Changes are
given with respect to a base test case (usually #1).

A general random test case, DMODE=0 (RTI, foofl.dat),
votecontrol=0. Checks that all the voters are off.

2-7. Test cases checking voter placement. Voters in the fts harness are

8
9-19
20-27

activated via VOTECONTROL one at the time. VOTECONTROL
activation order 1, 3, 2, 4, 8 16.

Votecontrol and their activation results are detailed below:

Sets the Linnoise values of first 4 sensors to true.
Sets Linoffset value of first sensor to 0.0

Sets linout value of first sensor to BADDAT;

Sets SYSSTATUS to false.

sets the estimate values of acceleration values to
large values of 99999.0

16 : Sets garbage values in display output values.

0 & Nw =

General test case, (base 1) DMODE = 88.

base = case #1, systematic changes in DMODE testing for principal
display modes (0,21-24,31-33,1,2,99).

Check for various display modes which do valid displays, and

the boundary display modes.

Check for mod 4096 (all chans), base = #1, offraw:selected
values are increased with 4096 or 8192 to check if only
lower order bits are being used.

Sep 11 08:39 1987 certify.ReadMe data Page 2

28-52.

53-85.

87-110

86, 111-

150-151

152-392.

393-796

base = #1, changes in DMODE and LINFAILIN, checking for different
"blank" displays, specific failure display formats, and failures
of one sensor (28-37), whole faces (two sensors, 38-43),

and various combinations of four failing sensors (44-52),

with one instance of eight failed sensors (50).

The sensors are failed on input, to check for I display.

base = $1, random activation of different display modes continues
(to ultimately test all values 0-99 by the end of the ESV set).
Noise on calibration (OFFRAW) in steps of +/- 6, +/-12,

+/- 18 and +/- 24. Case 57 test has LINSTD=8, DMODE=1 and noise
on calibration channel 1 of +/- 24 (8x3=24).

Also checked are the display failure formats for LINNOISE

values, and the correct use of variable LINSTD, and correct
computation of calibration noise levels.

6 and 24 were chosen because these were the boundary cases

for noisiness for the linstd values chosen.

changes in LINSTD (9, 2,1 with +/- 24 on i/p channels)
to check correct use of LINSTD variable and sensitivity of
the calibration procedure.

149. changes in RAWLIN, DMODE, LINFAILIN, various combinations of
failures on input, noise and edgevector failures, base = #1.

Values in RAWLIN are so changed as to reflect an assured failure

in edgevector test, so that there are no ambiguities left.

The values of DMODE are again chosen to test the display

failure format. The failures are combined with failures on input, to
see if the edgevector tests are properly employed.

Large changes in misalign [i,6] field, only the sixth axis

was chosen for contamination because according to the latest
specifications that is the only angle not used in the

rsdimu procedure. It use significantly changes output values only
if its value is much larger than normal. Changes

in the values of other angles will not provided new information.

Test cases checking for the minimal sensor noise levels for
failure declaration. Cases 152-365 no prior failures. Cases
366-392 prior failures on one and two faces.

These test cases test the sensitivity requirements that

all three edges fail the edgevector test before a failure is
declared. False alarms are raised when only one or two edges fail.
The normal value for the triplet threshold is 49 counts away from
the correct figure for no prior failures on the rsdimu. The
threshold values will change with the number and place

of previous failures.

CRA proposed test cases with various combinations of
sensors failed on input and up to one additional sensor
failed in the edge vector test.
56 test cases with 1 sensor failed on input.
168 cases with two sensors failed on input.
120 cases with 3 sensors failed on input.
30 cases with 4 sensors failed on input.
8 cases with 7 sensors failed on input.

-

Sep 11 08:39 1987 certify.ReadMe data Page 3

and the rest are other combinations.

Test cases numbers higher than 796 refer to random test cases.

Sep 11 08:39 1987 certify.ReadMe driver Page 1

Fault-Tolerant Software Experiment
DRIVER FOR THE RSDIMU CERTIFICATION
RSDIMU-ATS 3.0/PR/UNIX/FTS.NASA-LaRC.Va/NCSU.CSC/05-Mar-87

**** You do not need to read this if you will be using fts_compile and
fts_execute macros.

fts driver.p is a Pascal driver program to run your rsdimu procedure.You

may make modifications to suit your tastes, but it is adequate in its present
form. To compile it you have to include your file containing rsdimu procedure
in the place provided in the source code. (It has to have a .i suffix to

run successfully). Also you have to make a call to rsdimu procedure at

the place designated.

The compiler command would be:
pc -C -s -o driver fts driver.p

-s option would circumvent any problems you may encounter due to mixed
letter cases and non-standard i/o handling.

The executable module is created in file "driver", which can be run

as a shell command.

The driver expects the testcase input in a format as shown in the file
"fts _errdata.sample". The output, after a successful run of the driver,
is in fts sample.out. Note driver is interactive.

If you wish to generate your own input data you will need to use the
"No output data" option.

Note that there are several parameters which are special and are

not part of the rsdimu variable/parameter set and are not given in

the specs. These variables appear at the beginning of the fts errdata.sample
file. The rsdimu parameters begin with 15.0000 for obase. If you wish to
use the fts driver.p on its own and without golden data then you need

to retain only the line before 15.0000 (votecontrol, case number).
Votecontrol serves to control special voter routine actions (whether

a particular voter changes the values of it parameters or not). It is used
solely for testing placement and use of the voter routines. You need

to leave it as is for regression testing of your code after correction.
You may experiment with it if you wish to build you own test sets.

You do not have to worry about it in the rsdimu code, the variable

is taken care of in the driver code.

The other parameters control the comparisons with golden answer and
you do not need to use them, unless you provide full format of the
file (with dummy golden answers for example).

w

Sep 11 08:39 1987 certify.ReadMe for testing Page 1

Fault-Tolerant Software Experiment
Testing RSDIMU code
RSDIMU-ATS 3.0/PR/UNIX/FTS.NASA-LaRC.Va/NCSU.CSC/05-Mar-87
Using the fts compile and fts execute macros is simple. Run them without
any parameters to obtain the description of the paramters you need. The
following sample should help.

It is assumed that you have received correqg.ncdé and errdata.ncdé6all
from your experiment supervisor.

To compile program ncsuD7 which is (let’s assume so) in your certify
file, and is the program you have just corrected run

fts_compile ncsuD7 7 > c.7&

When the run finishes check c.7 for compilation errors etc. If ok
proceed (rsdimu.7 will contain driver+ncsuD7 executable code).

fts execute 7 errdata.ncdfall ncsub7 > x.7&
when job finishes check x.7. If there still are differences from the
expected outputs go back and correct your code once more, otherwise
submit error reports and the new code to your supervisor.

Make use of the correg.ncdé6 and ReadMe data.

Sep 11 08:39 1987 data.ReadMe Page 1
Fault-Tolerant Software Experiment

DATA FOR THE ACCEPTANCE TESTING
RSDIMU ACCEPTANCE TESTING SYSTEM (RSDIMU-ATS)

RSDIMU-ATS 3.0/PR/UNIX/FTS.NASA-LaRC.Va/NCSU.CSC/05-Mar-87

All the testcases in this release of the system comply with the
specification version 3.2/10-Feb-87. A test case entry consists of an
input record, and an output record. The latter contains what is believed
to be the correct answer to the input record according to the 3.2 specs,
and as generated/given by gold3v2.i.

The test cases are supplied in Pascal readable files.

The format can be found in the fts prnt.p source code in accept/.

The format in which the test cases are given is suitable for use

with the accept/fts _accept. Use of the system in non-Vax and UNIX-like
environments is described in nonVAX host directory, data may be
re-generated using code suplied in the "generators" directory.

The latter action is should not be undertaken without consultation with
the ATS distribution site (NCSU).

If you wish to print out all, or some, of the test cases use
accept/fts listdata.

If you wish to compare (difference) test cases use fts_diff.
This set of test cases was designed and generated for acceptance testing

of the rsdimu code. It consists of a group of 796 extremal/special value
(ESV) test cases and a group of 400 random test cases. There are four files

of data:

all.dat - ESV test cases, followed by random test cases
(randomNCSU.dat, then randomCRA.dat).

esv.dat - ESV test cases, only (796).

randNCSU.dat - random test cases, only (uniform sampling, 200).

randCRA.dat - random test cases, only (shaped sampling, 200).

A successful pass through all the test cases gives an estimated lower
limit on the reliability of the rsdimu code of about 0.992 (valid for
the employed sampling profile).

The all.dat set should provide 100% block coverage of the rsdimu

code. If this is not the case (running fts accept with -x option will
give the coverage info), one should very carefully examine the tested
code in places where coverage was not provided. The nature of the
rsdimu problem, and the specifications, is such that a thorough
programmer can provide for situations and functions which are not
explicitly handled in the specifications (e.g. singular matrices,
large changes in the slope constants leading to large raw acceleration

-

Sep 11 08:39 1987 data.ReadMe Page 2

values). Redundant code of the type that cannot be excited according

to the current specifications, but could possibly be needed under
exceptional circumstances, should be tested by the programmers
providing it. They should also provide test cases for these

situations (if possible). Alternatively they should provide a written
explanation of the cirumstances and reasons for including that
particular code. The golden program gold3vl.i, for example has 5 blocks
handling display of extremal input acceleration values (>10g) which are
not tested by the current acceptance data set since such large input
values are outside the conversion range of the provided equations.

The coverage figures should be considered only in the last stage of the
acceptance testing, i.e. when all.dat cases have been passed without

a failure, and all the corrections requests have been implemented

(e.g. after the final regression pass through all.dat).

The ESV data set is further described in the ReadMe_esv file, and
the random data sets are described in the ReadMe random file.

Sep 11 08:39 1987 data.ReadMe esv Page 1

Fault-Tolerant Software Experiment

THE ESV DATA FOR THE ACCEPTANCE TESTING
RSDIMU ACCEPTANCE TESTING SYSTEM (RSDIMU-ATS)

RSDIMU-ATS 3.0/PR/UNIX/FTS.NASA-LaRC.Va/NCSU.CSC/05-Mar-87

The data file esv.dat contains 796 extremal and special (ESV) test
cases. The test cases were designed to provide full functional coverage
of the RSDIMU specifications v3.2/10-Feb-87.

The test cases are based on an initial random case which was

then modified step by step to check a particular function and/or
option. In the following overview of the ESV data only the principal
features of the data sub-classes are given, along with the

principal variables that were changed at any one time. Changes are
given with respect to a base test case (usually #1).

Listing of all or some of the test cases can be obtained by running
accept/fts listdata. Difference between test cases may be examined
using fts diff.

1. A general random test case, DMODE=0 (RTI, foofl.dat),
votecontrol=0. Checks that all the voters are off.

2-7. Test cases checking voter placement. Voters in the fts_harness are
activated via VOTECONTROL one at the time. VOTECONTROL
activation order 1, 3, 2, 4, 8 16.

Votecontrol and their activation results are detailed below:

Sets the Linnoise values of first 4 sensors to true.
Sets Linoffset value of first sensor to 0.0

Sets linout value of first sensor to BADDAT;

Sets SYSSTATUS to false.

sets the estimate values of acceleration values to
large values of 99999.0

16 : Sets garbage values in display output values.

o B N SS VAN

8 General test case, (base 1) DMODE = 88.

9-19 base = case #1, systematic changes in DMODE testing for principal
display modes (0,21-24,31-33,1,2,99).
Check for various display modes which do valid displays, and
the boundary display modes.

20-27 check for mod 4096 (all chans), base = #1, offraw:selected
values are increased with 4096 or 8192 to check if only
lower order bits are being used.

28-52. base = #1, changes in DMODE and LINFAILIN, checking for different
"blank" displays, specific failure display formats, and failures

-

Sep 11 08:39 1987 data.ReadMe esv Page 2

of one sensor (28-37), whole faces (two sensors, 38-43),
and various combinations of four failing sensors (44-52),
with one instance of eight failed sensors (50).

The sensors are failed on input, to check for I display.

53-85. base = #1, random activation of different display modes continues
(to ultimately test all values 0-99 by the end of the ESV set).
Noise on calibration (OFFRAW) in steps of +/- 6, +/-12,
+/- 18 and +/- 24. Case 57 test has LINSTD=8, DMODE=1 and noise
on calibration channel 1 of +/- 24 (8x3=24).
Also checked are the display failure formats for LINNOISE
values, and the correct use of variable LINSTD, and correct
computation of calibration noise levels.
6 and 24 were chosen because these were the boundary cases
for noisiness for the linstd values chosen.

87-110 changes in LINSTD (9, 2,1 with +/- 24 on i/p channels)
to check correct use of LINSTD variable and sensitivity of
the calibration procedure.

86, 111-149. changes in RAWLIN, DMODE, LINFAILIN, various combinations of
failures on input, noise and edgevector failures, base = #1.
Values in RAWLIN are so changed as to reflect an assured failure
in edgevector test, so that there are no ambiguities left.
The values of DMODE are again chosen to test the display
failure format. The failures are combined with failures on input, to
see if the edgevector tests are properly employed.

150-151 Large changes in misalign [i,6) field, only the sixth axis
was chosen for contamination because according to the latest
specifications that is the only angle not used in the
rsdimu procedure. It use significantly changes output values only
if its value is much larger than normal. Changes
in the values of other angles will not provied new information.

152-392. Test cases checking for the minimal sensor noise levels for
failure declaration. Cases 152-365 no prior failures. Cases
366-392 prior failures on one and two faces.
These test cases test the sensitivity requirements that
all three edges fail the edgevector testi before a failure is
declared. False alarms are raised when only one or two edges fail.
The normal value for the triplet threshold is 49 counts away from
the correct figure for no prior failures on the rsdimu. The
threshold values will change with the number and place
of previous failures.

393-796 CRA proposed test cases with various combinations of
sensors failed on input and up to one additional sensor
failed in the edge vector test.

56 test cases with 1 sensor failed on input.
168 cases with two sensors failed on input.
120 cases with 3 sensors failed on input.
30 cases with 4 sensors failed on input.
8 cases with 7 sensors failed on input.
and the rest are other combinations.

s ;l

Sep 11 08:39 1987 data.ReadMe esv Page 3

More detailed information about the ESV test cases can be obtained
by displaying the differences between a chosen base case (#l usually)
and a series of other test cases. Utility shell script fts_diff,
based on the UNIX diff processor, is provided for this purpose.
By executing

fts diff esv.dat esvdiff 115 123 1

you can obtain, for example, in file esvdiff differences in the input
values of cases 115 to 123 with respect to test case #1 of the data file
esv.dat.

The CRA document regarding choice of random and ESV test cases was provided
as a separate item (not in electronic form) with release 2.0 of RSDIMU-ATS.

Sep 11 08:39 1987 data.ReadMe_random Page 1

Fault-Tolerant Software Experiment

THE RANDOM DATA FOR THE ACCEPTANCE TESTING
RSDIMU ACCEPTANCE TESTING SYSTEM (RSDIMU-ATS)

RSDIMU-ATS 3.0/PR/UNIX/FTS.NASA-LaRC.Va/NCSU.CSC/05-Mar-87

This set of 400 random test cases for rsdimu code is provided primarily
for the purpose of estimating the lower limit on the reliability of the
tested code, and as a check on the completeness of the ESV test cases.
The test cases are completely independent,

and no attempt was made to mimic a flight trajectory and

the associated time correlation among the input variable values.
Therefore any cumulative effects linked to time correlation or auto-
correlation remain untested, here and in the extremal and special value
(esv.dat) set.

The random data are provide in two sub-sets: randomNCSU.dat and randomCRA.dat.

% e ok de g gk ok ok ek ke ok kK ke ke ok ek ok ok ko k ke ok ke ok ok ke ok

randomNCSU.dat

Within the employed sampling domain the distribution of the generated
input values is essentially flat. It contains 200 test cases.

In all cases the random data were generated using the random number
generator provided with the Pascal comiler (pc, UNIX/Ultrix). Details of the
mapping from the random numbers into the actual input variables are

given below. More details will be supplied on request. The part of

the code used to generate random input values is also enclosed

(as fts NCSUzzrand.i), and it derives in part from the RTI random test
harness (September 85).

The input variables randomly sampled, or computed on the basis of
randomly sampled values are:

offraw, linfailin, rawlin, misalign, normface, temp, phiv, thetav, psiv,
phi, thetai, psii, dmode, linnoise, linfailout, scale0,1,2, obase,
linstd and nsigt.

A more thorugh understanding of the random generation process and of the
resulting input profiles can be gained by studying the
fts_NCSUzzrand.i code.

The random set, randomNCSU.dat, consists of two hundred random test cases
stratified into two sub-sets. The first one hundred test cases have

the noise on sensors (rawlin) boosted by 200 counts everytime linfailout for a
sensor is true. Thus the sensor noise level is guaranteed to exceed the
sensitivity threshold of about 50 counts and the sensor should be

recognized as failed. The second one hundred test cases, on the other

Sep 11 08:39 1987 data.ReadMe_random Page 2

hand, have the noise added as a uniform distribution between 1 and
maxnoise-1 counts, and at half the uniform frequency for 0 and
maxnoise, the latter value having been read in by the driver program.
In this particular case maxnoise was 110, therefore the added noise
was symmetrically centered around the threshold value of 55 counts.

It is important to note that random test cases are intended to run
after all ESV test cases have been successfully negotiated. There

are special situations and combinations of variable values that are
covered in ESV test cases and not covered by the sampling domain used
to generate present random test cases. Our experience with the random
testing of rsdimu code is that the sensitivity of the random test cases
to errors is very low. Unless very detailed partitioning is employed
(better to use ESV cases in that case) detection capabilities of the
random test cases to distinct errors saturate extremely quickly.

After 2 to 10 random test cases the same errors are usually detected
over and over again (if not removed). Once past 100 random test cases
detection of new, different, errors becomes an almost negligible
event, unless the random sampling profile is changed and tuned to the
character of the already detected faults, or partitions not previously
covered are sampled.

For all practical purposes the two sets of 100 test cases, are a single random
set of 200 test cases, which if executed successfully, provides us with
a lower limit for the rsdimu reliability (at the 95% confidence level)

of about 0.985.
initial random seed for 1lst 100 cases is: 777

initial random seed for 2nd 100 cases is: 1234567890

de e de g dode Kk ok de ok odk ok ke ke ko ok ok ok ok k ok ok ok ok k

randomCRA.dat

The second sub-set, randCRA.dat, was generated on the basis of the
CRA document TM8602,/26-Aug-86.

CRA random test cases are generated with the specifications provided
in the CRA documents (especially for PHIV, PSIV and THETAV, NSIGT =
2..7 etc). The calibration noise is normally distributed, and

the number of noisy sensors during calibration is exponentially
distributed with a parameter of 0.18. The edge vector test can fail
one additional sensor, with random noise of upto 200 counts.

No sensors fail on input. Generation details can be found in

fts CRAzzrand.i

initial random seed is: 987654321

K g sk Kk gk Kk ok Kk de sk Kk ok gk g ok ok Kk ok Kk ok ok ok ok ok ok ok

For all practical purposes the two sets of 200 test cases, are a single random
set of 400 test cases, which if executed successfully, provides us with
a lower limit for the rsdimu reliability (at the 95% confidence level)

. of about 0.992.

-

Sep 11 08:39 1987 data.ReadMe random Page 3

During the generation of the random test cases care is taken to examine
the obtained data and to eliminate cases where more than one sensor
fails in flight.

Sep 11 08:39 1987 gold.ReadMe Page 1

Fault-Tolerant Software Experiment
THE GOLDEN DISPLAY AND RSDIMU CODES

RSDIMU-ATS 3.0/PR/UNIX/FTS.NASA-LaRC.Va/NCSU.CSC/05-Mar-87

There are 2 files in this directory viz. display.i, and gold3vl.i
The sources correspond to specification version v3.2/10-Feb-87,

display.i contains the display module extracted from the gold program.
It has been extensively tested as a stand alone module, and

gives results in accordance with the specifications v3.2.

It does not need any special declarations in the main program except for
those which are in the RSDIMU procedure assumed to be

globally available (only the type declarations.)

To use this procedure just use standard #include compiler option, and
the calling format

display (DISMODE, DISUPPER, DISLOWER);

Use of the golden rsdimu follows the same rules as use of any other rsdimu
code, and is fully explained in the specs (see also certify/driver.p).

